日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,點A(a,b)是拋物線上一動點,OBOA交拋物線于點B(c,d).當點A在拋物線上運動的過程中(點A不與坐標原點O重合),以下結論:①ac為定值;②ac=﹣bd;③△AOB的面積為定值;④直線AB必過一定點.正確的有( 。

          A. 1 B. 2 C. 3 D. 4

          【答案】C

          【解析】分析:過點A、B分別作x軸的垂線,通過構建相似三角形以及函數(shù)解析式來判斷①②是否正確.的面積不易直接求出,那么可由梯形的面積減去構建的兩個直角三角形的面積得出,根據(jù)得出的式子判斷這個面積是否為定值.利用待定系數(shù)法求出直線AB的解析式,即可判斷④是否正確.

          詳解:過A.B分別作ACx軸于C.BDx軸于D,則:AC=b,OC=a,OD=c,BD=d;

          (1)由于OAOB,易知△OAC∽△BOD,有:

          ac=bd(結論②正確).

          (2)將點A.B的坐標代入拋物線的解析式中,有:

          、

          ×,得: (結論①正確).

          (3),

          ,

          由此可看出,AOB的面積不為定值(結論③錯誤).

          (4)設直線AB的解析式為:y=kx+h,代入A.B的坐標,得:

          ak+h=b、ck+h=d

          ×c×a,得:

          ∴直線ABy軸的交點為(0,2)(結論④正確).

          綜上,共有三個結論是正確的,它們是①②④,

          故選C.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,大樓底右側有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點C的俯角為30°,測得大樓頂端A的仰角為45°(點B,C,E在同一水平直線上). 已知AB=80m,DE=10m,求障礙物B,C兩點間的距離.(結果精確到0.1m)

          (參考數(shù)據(jù):

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖1,在平面直角坐標系中,正方形ABCD頂點C3,0),頂點D0,4),過點AAFy軸于F點,過點Bx軸的垂線交過A點的反比例函數(shù)yk0)的圖象于E點,交x軸于G點.

          1)求證:CDO≌△DAF

          2)求反比例函數(shù)解析式及點E的坐標;

          3)如圖2,過點C作直線lAE,在直線l上是否存在一點P使PAC是等腰三角形?若存在,求P點坐標,不存在說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某校舉行“足球在身邊”的專題調(diào)查活動,采取隨機抽樣的方法進行問卷調(diào)查,調(diào)查結果劃分為“非常了解”、“比較了解”、“基本了解”、“不太了解”四個等級,并將調(diào)查結果繪制成兩幅不完整的統(tǒng)計圖(如圖),請根據(jù)圖中提供的信息,解答下列問題:

          (1)被調(diào)查的學生共有___人.在扇形統(tǒng)計圖中,表示“比較了解”的扇形的圓心角度數(shù)為___度

          (2)請用列表法或樹狀分析從名男生和名女生中隨機抽取名學生參加“足球在身邊”的知識競賽,抽中女的概率.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在四邊形ABCD中,AC平分∠BAD,CEABE,AD+AB=2AE,

          求證:∠ADC+B=180

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】求出下列函數(shù)中自變量x的取值范圍

          (1) (2) (3) (4)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】1)小明準備制作一個封閉的正方體盒子,他先用5個大小一樣的正方形制成如圖1所示的拼接圖形(實線部分),經(jīng)折疊后發(fā)現(xiàn)還少一個面,請在圖中的拼接圖形上再接一個正方形,使新拼接的圖形經(jīng)過折疊后能成為一個封閉的正方體盒子.(添加的正方形用陰影表示.只要畫出一種即可)

          2)如圖2所示的幾何體是由幾個相同的正方體搭成的,請畫出它從正面看的形狀圖.

          3)如圖3是幾個正方體所組成的幾何體從上面看的形狀圖,小正方形中的數(shù)字表示該位置小正方體的個數(shù),請畫出這個幾何體從左面看的形狀圖.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某商場銷售一批電視機,一月份每臺毛利潤是售出價的20%(毛利潤=售出價-買入價),二月份該商場將每臺售出價調(diào)低10%(買入價不變),結果銷售臺數(shù)比一月份增加120%,那么二月份的毛利潤總額與一月份毛利潤總額的比是__________。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點,且點A的橫坐標為4,

          (1)求k的值;

          (2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍;

          (3)過原點O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(P點在第一象限),若由點A、P、B、Q為頂點組成的四邊形面積為224,求點P的坐標.

          【答案】(1) k=32 (2) x<﹣8或0<x<8 (3) P(﹣7+3 ,16+);或P(7+3,﹣16+

          【解析】分析:(1)先將x=4代入正比例函數(shù)y=2x,可得出y=8,求得點A(4,8),再根據(jù)點AB關于原點對稱,得出B點坐標,即可得出k的值;

          (2)正比例函數(shù)的值小于反比例函數(shù)的值即正比例函數(shù)的圖象在反比例函數(shù)的圖象下方,根據(jù)圖形可知在交點的右邊正比例函數(shù)的值小于反比例函數(shù)的值.

          (3)由于雙曲線是關于原點的中心對稱圖形,因此以A、B、P、Q為頂點的四邊形應該是平行四邊形,那么△POA的面積就應該是四邊形面積的四分之一即56.可根據(jù)雙曲線的解析式設出P點的坐標,然后表示出△POA的面積,由于△POA的面積為56,由此可得出關于P點橫坐標的方程,即可求出P點的坐標.

          詳解:(1)∵點A在正比例函數(shù)y=2x上,

          把x=4代入正比例函數(shù)y=2x,

          解得y=8,點A(4,8),

          把點A(4,8)代入反比例函數(shù)y=,得k=32,

          (2)∵點A與B關于原點對稱,

          B點坐標為(﹣4,﹣8),

          由交點坐標,根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍,x<﹣8或0<x<8;

          (3)∵反比例函數(shù)圖象是關于原點O的中心對稱圖形,

          ∴OP=OQ,OA=OB,

          四邊形APBQ是平行四邊形,

          SPOA=S平行四邊形APBQ×=×224=56,

          設點P的橫坐標為m(m>0且m≠4),

          得P(m, ),

          過點P、A分別做x軸的垂線,垂足為E、F,

          點P、A在雙曲線上,

          ∴SPOE=SAOF=16,

          若0<m<4,如圖,

          ∵SPOE+S梯形PEFA=SPOA+SAOF,

          ∴S梯形PEFA=SPOA=56.

          (8+)(4﹣m)=56.

          m1=﹣7+3,m2=﹣7﹣3(舍去),

          P(﹣7+3,16+);

          若m>4,如圖,

          ∵SAOF+S梯形AFEP=SAOP+SPOE

          ∴S梯形PEFA=SPOA=56.

          ×(8+)(m﹣4)=56,

          解得m1=7+3,m2=7﹣3(舍去),

          P(7+3,﹣16+).

          點P的坐標是P(﹣7+3,16+);或P(7+3,﹣16+).

          點睛:本題考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式和反比例函數(shù)y=k的幾何意義.這里體現(xiàn)了數(shù)形結合的思想,做此類題一定要正確理解k的幾何意義.利用數(shù)形結合的思想,求得三角形的面積.

          型】解答
          束】
          23

          【題目】如圖,在梯形ABCD中,ADBC,AB=DC=AD=9,ABC=70°,點E,F(xiàn)分別在線段AD,DC上(點E與點A,D不重合),且∠BEF=110°.

          (1)求證:△ABE∽△DEF.

          (2)當點EAD中點時,求DF的長;

          (3)在線段AD上是否存在一點E,使得F點為CD的中點?若存在,求出AE的長度;若不存在,試說明理由.

          查看答案和解析>>

          同步練習冊答案