日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:如圖,點O是∠EPF的平分線上的一點,以O(shè)為圓心的圓和角的兩邊分別交于點A,B和C,D.求證:AB=CD.
          分析:過O作OM⊥AB于M,ON⊥CD于N,連接OA、OC,根據(jù)角平分線性質(zhì)得出ON=OM,根據(jù)勾股定理求出AM=CN,根據(jù)垂徑定理得出AB=2AM,CD=2CN,即可得出答案.
          解答:
          解:過O作OM⊥AB于M,ON⊥CD于N,連接OA、OC,
          則∠OMA=∠ONC=90°,
          ∵點O是∠EPF的平分線上,
          ∴OM=ON,
          在Rt△AMO和RtONC中,由勾股定理得:AM2=OA2-OM2,CN2=OC2-ON2,
          ∵OC=OA,
          ∴AM=CN,
          ∵OM、ON過O,OM⊥AB,ON⊥CD,
          ∴AB=2AM,CD=2CN,
          ∴AB=CD.
          點評:本題考查了垂徑定理,勾股定理,角平分線性質(zhì)的應(yīng)用,主要考查學(xué)生的推理能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,點P是平行四邊形ABCD的邊DC上一點,且AP和BP分別平分∠DAB和∠C精英家教網(wǎng)BA.
          (1)求證:AP⊥PB;
          (2)如果AD=5,AP=8,求△APB的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知:如圖,點O是等腰直角△ABC斜邊AB的中點,D為BC邊上任意一點.
          操作:在圖中作OE⊥OD交AC于E,連接DE.
          問題:(1)觀察并猜測,無論∠DOE繞著點O旋轉(zhuǎn)到任何位置,OD和OE始終有何數(shù)量關(guān)系?(直接寫出答案)
           

          (2)如圖所示,若BD=2,AE=4,求△DOE的面積.
          (說明:如果經(jīng)過思考分析,沒有找到解決(2)中的問題的方法,請直接驗證(1)中猜測的結(jié)論)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          10、已知:如圖,點P是正方形ABCD的對角線AC上的一個動點(A、C除外),作PE⊥AB于點E,作PF⊥BC于點F,設(shè)正方形ABCD的邊長為x,矩形PEBF的周長為y,在下列圖象中,大致表示y與x之間的函數(shù)關(guān)系的是(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,點O是四邊形BCED外接圓的圓心,點O在BC上,點A在CB的延長線上,且∠AD精英家教網(wǎng)B=∠DEB,EF⊥BC于點F,交⊙O于點M,EM=2
          5

          (1)求證:AD是⊙O的切線;
          (2)若弧BM上有一動點P,且sin∠CPM=
          2
          3
          ,求⊙O直徑的長;
          (3)在(2)的條件下,如果DE=
          14
          ,求tan∠DBE的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          25、已知:如圖,點D是△ABC的邊AC上的一點,過點D作DE⊥AB,DF⊥BC,E、F為垂足,再過點D作DG∥AB,交BC于點G,且DE=DF.
          (1)求證:DG=BG;
          (2)求證:BD垂直平分EF.

          查看答案和解析>>

          同步練習(xí)冊答案