日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某校為了美化校園計劃購買茶花、桂花兩種樹苗共600株,茶花樹苗每株35元,桂花樹苗每株40元.相關資料表明:茶花、桂花樹苗的成活率分別為80%,90%.
          (1)若購買這兩種樹苗共用去22000元,則茶花、桂花樹苗各購買多少株?
          (2)若要使這批樹苗的總成活率不低于85%,則茶花樹苗至多購買多少株?
          (3)在(2)的條件下,應如何選購樹苗,使購買樹苗的費用最低,并求出最低費用.

          【答案】
          (1)解:設購買茶花樹苗x株,桂花樹苗y株,依題可得:

          ,

          解得

          答:購買茶花樹苗400株,桂花樹苗200株.


          (2)解:設購買茶花樹苗z株,桂花樹苗(600﹣z)株,依題可得:

          80%z+90%(600﹣z)≥85%×600,

          解得z≤300.

          答:茶花樹苗至多購買300株.


          (3)解:設買茶花樹苗購買m株,購買樹苗的費用為W元,依題可得:

          W=35m+40(600﹣m)=﹣5m+24000

          ∵﹣5<0,

          ∴W隨m的增大而減小,

          ∵0<m≤300,

          ∴當m=300時,W有最小值.W=24000﹣5×300=22500元.

          答:當選購買茶花樹苗300株,桂花樹苗300株時,總費用最低為22500元.


          【解析】(1)設購買茶花樹苗x株,桂花樹苗y株,根據(jù)題意可得一個二元一次方程組,解之即可得出答案.
          (2)設購買茶花樹苗z株,桂花樹苗(600﹣z)株,根據(jù)題意可得一元一次不等式方程,解之即可得出答案.
          (3)設買茶花樹苗購買m株,購買樹苗的費用為W元,根據(jù)題意可得W=35m+40(600﹣m)=﹣5m+24000,再根據(jù)一次函數(shù)的性質﹣5<0,W隨m的增大而減小,由自變量的取值范圍:0<m≤300,得出Wmin.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,AB是⊙O直徑,點C在⊙O上,AD平分∠CAB,BD是⊙O的切線,AD與BC相交于點E.
          (1)求證:BD=BE;
          (2)若DE=2,BD= ,求CE的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,方格紙上的每個小方格都是邊長為1的正方形,我們把以格點間連線為邊的三角形稱為“格點三角形”,圖中的△ABC就是格點三角形.在建立平面直角坐標系后,點B的坐標為(﹣2,﹣1).

          (1)把△ABC向左平移4格后得到△A1B1C1,畫出△A1B 1C1并寫出點A1的坐標;

          (2)把△ABC繞點C按順時針旋轉90°后得到△A2B2C,畫出△A2B2C的圖形并寫出點A2的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,等腰直角三角板的一個銳角頂點與正方形ABCD的頂點A重合,將此三角板繞點A旋轉,使三角板中該銳角的兩條邊分別交正方形的兩邊BCDC于點E、F,連結EF.若EF=5,DF=2,則BE的長為_______

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知直線,直線與直線、分別相交于C、D兩點.

          (1)如圖a,有一動點P在線段CD之間運動(不與C、D兩點重合),問在點P的運動過程中,是否始終具有∠3+∠1=∠2這一關系,為什么?

          (2)如圖b,當動點P線段CD之外運動(不與C、D兩點重合),問上述結論是否成立?若不成立,試寫出新的結論并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,請描出A(-3,-2),B(2,-2)C(3,1),D(-21)四個點。

          1)線段AB、CD有什么關系?

          2)順次連接A、B、CD四點組成的圖形是什么圖形?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知拋物線y=ax2+bx+c(a≠0)經(jīng)過原點,頂點為A(h,k)(h≠0).

          (1)當h=1,k=2時,求拋物線的解析式;
          (2)若拋物線y=tx2(t≠0)也經(jīng)過點A,過a與t之間的關系式;
          (3)在(2)的條件下,已知a=﹣ ,直線l:y= x﹣1與拋物線y=tx2 x﹣7交于點B,C,與x軸,y軸交于點D,E,點M在拋物線y=tx2 x﹣7上,且點M的橫坐標為m(0<m<6).MF∥y軸交于直線l于點F,點N在直線l上,且四邊形MNFQ為矩形(如圖),若矩形MNFQ的周長為P,求P的最大值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】計算:

          (1)5a2×2ab2;

          (2)[(x+2y)2-(x+y)(x-y)-5y2]÷2x;

          (3)(-3.6×1010)÷(-2×102)2;

          (4)(2a-b+3)(2a-3+b).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知ABCD.

          (1)如圖①,若∠ABE30°,∠BEC148°,求∠ECD的度數(shù);

          (2)如圖②,若CFEBCF平分∠ECD,試探究∠ECD與∠ABE之間的數(shù)量關系,并證明.

          查看答案和解析>>

          同步練習冊答案