日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,在等腰直角三角形ABC中,∠BAC=90°,在BC上截取BD=BA,作∠ABC的平分線與AD相交于點P,連結(jié)PC,若△ABC的面積為4cm2,則△BPC的面積為( 。
          A、4cm2B、3cm2C、2cm2D、8cm2
          分析:根據(jù)等腰三角形三線合一的性質(zhì)可得AP=PD,然后根據(jù)等底等高的三角形面積相等求出△BPC的面積等于△ABC面積的一半,代入數(shù)據(jù)計算即可得解.
          解答:解:∵BD=BA,BP是∠ABC的平分線,
          ∴AP=PD,
          ∴S△BPD=
          1
          2
          S△ABD,S△CPD=
          1
          2
          S△ACD,
          ∴S△BPC=S△BPD+S△CPD=
          1
          2
          S△ABD+
          1
          2
          S△ACD=
          1
          2
          S△ABC,
          ∵△ABC的面積為4cm2,
          ∴S△BPC=
          1
          2
          ×4=2cm2
          故選:C.
          點評:本題考查了等腰三角形三線合一的性質(zhì),三角形的面積,利用等底等高的三角形的面積相等求出△BPC的面積與△ABC的面積的關(guān)系是解題的關(guān)鍵.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.
          類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時sad A=
          底邊
          =
          BC
          AB
          .容易知道一個角的大小與這個角的正對值也是相精英家教網(wǎng)互唯一確定的.
          根據(jù)上述對角的正對定義,解下列問題:
          (1)sad 60°的值為( B。
          A.
          1
          2
          ;B.1;C.
          3
          2
          ;D.2
          (2)對于0°<A<180°,∠A的正對值sad A的取值范圍是
           

          (3)已知sinα=
          3
          5
          ,其中α為銳角,試求sadα的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.

          類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時

          sad A=.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.

          根據(jù)上述對角的正對定義,解下列問題:

          (1)sad 的值為(  ▼  )

           A.             B.1                  C.                  D.2

          (2)對于,∠A的正對值sad A的取值范圍是   ▼   .

          (3)已知,其中為銳角,試求sad的值.

           

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.
          類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時
          sad A=.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.
          根據(jù)上述對角的正對定義,解下列問題:

          (1)sad 的值為( ▼ )
          A.B.1 C.D.2
          (2)對于,∠A的正對值sad A的取值范圍是  ▼   .
          (3)已知,其中為銳角,試求sad的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2011屆北京市昌平區(qū)初三上學期期末考試數(shù)學卷 題型:解答題

          教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.
          類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時
          sad A=.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.
          根據(jù)上述對角的正對定義,解下列問題:

          (1)sad 的值為( ▼ )

          A.B.1 C.D.2
          (2)對于,∠A的正對值sad A的取值范圍是  ▼   .
          (3)已知,其中為銳角,試求sad的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2010-2011學年北京市昌平區(qū)初三上學期期末考試數(shù)學卷 題型:解答題

          教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.

          類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時

          sad A=.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.

          根據(jù)上述對角的正對定義,解下列問題:

          (1)sad 的值為(  ▼  )

           A.             B. 1                  C.                  D. 2

          (2)對于,∠A的正對值sad A的取值范圍是   ▼   .

          (3)已知,其中為銳角,試求sad的值.

           

          查看答案和解析>>

          同步練習冊答案