日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,已知△ABC和△EFC都是等邊三角形,點E在線段AB上.
          (1)求證:AE=BF,BF∥AC;
          (2)若點D在直線AC上,且ED=EC(如圖2),求證:AB=AD+BF;
          (3)在(2)的條件下,若點E改為在線段AB的延長線上,其它條件不變(如圖3),請直接寫出AB、AD、BF之間的數(shù)量關系.

          【答案】
          (1)解:如圖1,∵△ABC和△EFC都是等邊三角形,

          ∴∠ACB=∠ECF=60°,AC=BC,CE=FC,

          ∴∠1=∠2,

          在△ACE和△BCF中,

          ,

          ∴△ACE≌△BCF(SAS),

          ∴AE=BF,且∠BAC=∠FBC=60°,

          又∠ABC=60°,

          ∴∠A+∠ABC+∠FBC=180°,即∠A+∠ABF=180°,

          ∴AC∥BF


          (2)解:證明:如圖2,過E作EM∥BC交AC于M,

          ∵∠ABC=∠ACB=60°,

          ∴∠AEM=∠AME=60°,

          ∴△AEM是等邊三角形,

          ∴AE=EM=AM,

          ∴∠DAE=∠EMC=120°,

          ∵DE=CE,

          ∴∠D=∠1,

          在△ADE和△MCE中,

          ,

          ∴△ADE≌△MCE(AAS),

          ∴AD=CM,

          由(1)得△ACE≌△FCB,

          ∴BF=AE=AM,

          ∵AC=AM+CM,

          ∴AC=BF+AD,

          即AB=BF+AD


          (3)解:AB、AD、BF之間的數(shù)量關系為:AB=BF﹣AD,

          理由:如圖3,過E作EM∥BC交AC的延長線于M,

          ∵∠ABC=∠ACB=60°,

          ∴∠AEM=∠AME=60°,

          ∴△AEM是等邊三角形,

          ∴AE=EM=AM,

          ∴∠DAE=∠EMC=60°,

          ∵DE=CE,

          ∴∠ADE=∠DCE,

          ∴∠ADE=∠ECM,

          在△ADE與△MCE中,

          ,

          ∴△ADE≌△MCE(AAS),

          ∴AD=CM,

          由(1)得△ACE≌△FCB,

          ∴BF=AE=AM,

          ∵AM=AC+CM,

          ∴AC=AM﹣CM,

          ∴AC=BF﹣AD,

          即AB=BF﹣AD.


          【解析】(1)根據(jù)等邊三角形的性質(zhì)得到∠ACB=∠ECF=60°,AC=BC,CE=FC,推出△ACE≌△FCB,得到AE=BF且∠A=∠CBF=60°,于是得到∠A+∠ABF=180°,根據(jù)平行線的判定定理即可得到AC∥BF;(2)過E作EM∥BC交AC于M,得到△AEM是等邊三角形,求得AE=EM=AM,∠DAE=∠EMC=120°,根據(jù)全等三角形的性質(zhì),得到AD=CM,由(1)得△ACE≌△FCB,得到BF=AE,進而推出AB=BF+AD;(3)過E作EM∥BC交AC的延長線于M,推出△AEM是等邊三角形,根據(jù)等邊三角形的性質(zhì),得到∠DAE=∠EMC=60°,推出∠ADE=∠ECM,根據(jù)全等三角形的性質(zhì),得到AD=CM,等量代換即可得到結論.
          【考點精析】通過靈活運用平行線的性質(zhì),掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補即可以解答此題.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】解方程:x(x﹣4)=2x﹣8.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】關于x的不等式(a-1)xa-1的解集為x<1,則下列判斷正確的是( 。

          A. a<0 B. a>1 C. a<1 D. a為任意數(shù)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】計算:(10mn3)÷(5mn2)_____

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】請你說明:一個三位數(shù)的百位上的數(shù)字與個位上的數(shù)字交換位置后,新數(shù)與原數(shù)之差能被99整除.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】

          如圖,已知點D在反比例函數(shù)y=的圖象上,過點D作x軸的平行線交y軸于點B(0,3).過點A(5,0)的直線y=kx+b與y軸于點C,且BD=OC,tan∠OAC=

          (1)求反比例函數(shù)y=和直線y=kx+b的解析式;

          (2)連接CD,試判斷線段AC與線段CD的關系,并說明理由;

          (3)點E為x軸上點A右側的一點,且AE=OC,連接BE交直線CA與點M,求∠BMC的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如果關于x的不等式(a-1)xa-1的解集為x<1,那么a的取值范圍是( )

          A. a≤1 B. a≥1 C. a<1 D. a<0

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】列方程或方程組解應用題:
          某山區(qū)有23名中、小學生因貧困失學需要捐助.資助一名中學生的學習費用需要a元,一名小學生的學習費用需要b元.某校學生積極捐助,初中各年級學生捐款數(shù)額與用其恰好捐助貧困中學生和小學生人數(shù)的部分情況如下表:

          (1)求a、b的值;
          (2)初三年級學生的捐款解決了其余貧困中小學生的學習費用,請將初三年級學生可捐助的貧困中、小學生人數(shù)直接填入表中.(不需寫出計算過程)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】二元一次方程2x+y=7的正整數(shù)解有多少組(
          A.2
          B.3
          C.5
          D.4

          查看答案和解析>>

          同步練習冊答案