【題目】如圖所示,半徑為5的⊙P與y軸交于點M(0,-4),N(0,-10)則第三象限內(nèi)的點P的坐標(biāo)是_____________.
【答案】(-4,-7)
【解析】
過P作PQ垂直于y軸,利用垂徑定理得到Q為MN的中點,由M與N的坐標(biāo)得到OM與ON的長,由OM-ON求出MN的長,確定出MQ的長,在直角三角形PMQ中,由PM與MQ的長,利用勾股定理求出PQ的長,由OM+MQ求出OQ的長,進(jìn)而可得出P點坐標(biāo).
過P作PQ⊥y軸,與y軸交于Q點,連接PM,∴Q為MN的中點,∵M(0,-4),N(0,-10),∴OM=4,ON=10,∴MN=10-4=6,MQ=NQ=3,OQ=OM+MQ=4+3=7,在Rt△PMQ中,PM=5,MQ=3,根據(jù)勾股定理得,∴P(-4,-7),故答案為(-4,-7).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)是(20,0),點B的坐標(biāo)是(16,0),點C、D在以OA為直徑的半圓M上,且四邊形OCDB是平行四邊形,則點C的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,,點
為
內(nèi)一點,
,
分別是點
關(guān)于
、
的對稱點,連接
,分別交
于
、
于
.如果
,
的周長為
,
的度數(shù)為
,請根據(jù)以上信息完成作圖,并指出
和
的值( )
A.,
B.
,
C.
,
D.
,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A、B分別是x軸、y軸上的動點,點C、D是某個函數(shù)圖象上的點,當(dāng)四邊形、B、C、D各點依次排列
為正方形時,我們稱這個正方形為此函數(shù)圖象的“伴侶正方形”,例如:在圖1中,正方形ABCD是一次函數(shù)
圖象的其中一個“伴侶正方形”.
如圖1,若某函數(shù)是一次函數(shù)
,求它的圖象的所有“伴侶正方形”的邊長;
如圖2,若某函數(shù)是反比例函數(shù)
,它的圖象的“伴侶正方形”為ABCD,點
在反比例函數(shù)圖象上,求m的值及反比例函數(shù)的解析式;
如圖3,若某函數(shù)是二次函數(shù)
,它的圖象的“伴侶正方形”為ABCD,點C坐標(biāo)為
,請你直接寫出該二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直線y=x+3與x軸、y軸分別相于點A和點B,點C在線段AO上.
將△CBO沿BC折疊后,點O恰好落在AB邊上點D處
(1)求直線BC的解析式;
(2)求點D的坐標(biāo);
(3)P為平面內(nèi)一動點,且以A、B、C、P為頂點的四邊形為平行四邊形,直接寫出點P坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A在拋物線y=3x2-2x+2上運動.過點A作AC⊥x軸于點C,以AC為對角線作矩形ABCD,連結(jié)BD,則對角線BD的最小值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖,在Rt△ABC中,∠ACB=90°∠BAC=30°.
動手操作:(1)若以直角邊AC所在的直線為對稱軸.將Rt△ABC作軸對稱變換,請你在原圖上作出它的對稱圖形:
觀察發(fā)現(xiàn):(2)Rt△ABC和它的對稱圖形組成了什么圖形?你最準(zhǔn)確的判斷是 .
合作交流:(3)根據(jù)上面的圖形,請你猜想直角邊BC與斜邊AB的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為地鐵調(diào)價后的計價表.調(diào)價后小明、小偉從家到學(xué)校乘地鐵分別需要4元和3元.由于刷卡坐地鐵有優(yōu)惠,因此,他們平均每次實付3.6元和2.9元.已知小明從家到學(xué)校乘地鐵的里程比小偉從家到學(xué)校的里程多5 km,且小明每千米享受的優(yōu)惠金額是小偉的2倍,求小明和小偉從家到學(xué)校乘地鐵的里程分別是多少千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點D是直線AB上的一動點(不和A、B重合),BE⊥CD于E,交直線AC于F.
(1)點D在邊AB上時,請證明:BD=AB﹣AF;
(2)試探索:點D在AB的延長線或反向延長線上時,請在備用圖中畫出圖形,(1)中的結(jié)論是否成立?若不成立,請直接寫出正確結(jié)論(不需要證明).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com