日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 閱讀下面一段文字:已知數(shù)列{an}的首項(xiàng)a1=1,如果當(dāng)n≥2時(shí),an-an-1=2,則易知通項(xiàng)an=2n-1,前n項(xiàng)的和Sn=n2.將此命題中的“等號(hào)”改為“大于號(hào)”,我們得到:數(shù)列{an}的首項(xiàng)a1=1,如果當(dāng)n≥2時(shí),an-an-1>2,那么an>2n-1,且Sn>n2.這種從“等”到“不等”的類(lèi)比很有趣.由此還可以思考:要證Sn>n2,可以先證an>2n-1,而要證an>2n-1,只需證an-an-1>2(n≥2).結(jié)合以上思想方法,完成下題:
          已知函數(shù)f(x)=x3+1,數(shù)列{an}滿足a1=1,an+1=f(an),若數(shù)列{an}的前n項(xiàng)的和為Sn,求證:Sn≥2n-1.
          【答案】分析:本題考查的知識(shí)點(diǎn)是類(lèi)比推理,由命題中的“等號(hào)”性質(zhì),類(lèi)比推理出”“大于號(hào)”的性質(zhì).由a1=1,an+1=an3+1,an≥1.得出:an+1=an3+1≥an2+1≥2an,從而得到an≥2n-1,最后利用等比數(shù)列的求和公式即可證得結(jié)論.
          解答:解:∵a1=1,an+1=an3+1,an≥1.…4′
          ∴有:an+1=an3+1≥an2+1≥2an
          .…8′
          ,
          即an≥2n-1.…11′

          ∴Sn≥2n-1成立.…14′
          點(diǎn)評(píng):類(lèi)比推理的一般步驟是:(1)找出兩類(lèi)事物之間的相似性或一致性;(2)用一類(lèi)事物的性質(zhì)去推測(cè)另一類(lèi)事物的性質(zhì),得出一個(gè)明確的命題(猜想).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

          閱讀下面一段文字:已知數(shù)列{an}的首項(xiàng)a1=1,如果當(dāng)n≥2時(shí),an-an-1=2,則易知通項(xiàng)an=2n-1,前n項(xiàng)的和Sn=n2.將此命題中的“等號(hào)”改為“大于號(hào)”,我們得到:數(shù)列{an}的首項(xiàng)a1=1,如果當(dāng)n≥2時(shí),an-an-1>2,那么an>2n-1,且Sn>n2.這種從“等”到“不等”的類(lèi)比很有趣.由此還可以思考:要證Sn>n2,可以先證an>2n-1,而要證an>2n-1,只需證an-an-1>2(n≥2).結(jié)合以上思想方法,完成下題:
          已知函數(shù)f(x)=x3+1,數(shù)列{an}滿足a1=1,an+1=f(an),若數(shù)列{an}的前n項(xiàng)的和為Sn,求證:Sn≥2n-1.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          閱讀下面一段文字:已知數(shù)列{an}的首項(xiàng)a1=1,如果當(dāng)n≥2時(shí),an-an-1=2,則易知通項(xiàng)an=2n-1,前n項(xiàng)的和Sn=n2.將此命題中的“等號(hào)”改為“大于號(hào)”,我們得到:數(shù)列{an}的首項(xiàng)a1=1,如果當(dāng)n≥2時(shí),an-an-1>2,那么an>2n-1,且Sn>n2.這種從“等”到“不等”的類(lèi)比很有趣.由此還可以思考:要證Sn>n2,可以先證an>2n-1,而要證an>2n-1,只需證an-an-1>2(n≥2).結(jié)合以上思想方法,完成下題:
          已知函數(shù)f(x)=x3+1,數(shù)列{an}滿足a1=1,an+1=f(an),若數(shù)列{an}的前n項(xiàng)的和為Sn,求證:Sn≥2n-1.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

          (本小題滿分14分)

          閱讀下面一段文字:已知數(shù)列的首項(xiàng),如果當(dāng)時(shí),,則易知通項(xiàng),前項(xiàng)的和. 將此命題中的“等號(hào)”改為“大于號(hào)”,我們得到:數(shù)列的首項(xiàng),如果當(dāng)時(shí),,那么,且. 這種從“等”到“不等”的類(lèi)比很有趣。由此還可以思考:要證,可以先證,而要證,只需證). 結(jié)合以上思想方法,完成下題:

          已知函數(shù),數(shù)列滿足,,若數(shù)列的前項(xiàng)的和為,求證:.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案