日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若向量,在函數(shù)的圖象中,對(duì)稱中心到對(duì)稱軸的最小距離為,且當(dāng)的最大值為1.
          (Ⅰ)求函數(shù)f(x)的解析式;
          (Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
          【答案】分析:(I)利用函數(shù)求出向量的數(shù)量積,利用二倍角公式以及兩角差的正弦函數(shù)化簡(jiǎn)函數(shù)為一個(gè)角的一個(gè)三角函數(shù)的形式,通過對(duì)稱中心到對(duì)稱軸的最小距離為,求出函數(shù)的周期,得到ω,利用的最大值為1.
          求出t,得到函數(shù)的解析式.
          (II)利用正弦函數(shù)的單調(diào)增區(qū)間,求函數(shù)f(x)的單調(diào)遞增區(qū)間,即可.
          解答:(本小題滿分12分)
          解:(I)由題意得=
          =
          =
          =
          ∵對(duì)稱中心到對(duì)稱軸的最小距離為
          ∴f(x)的最小正周期為T=π∴,∴ω=1…(6分)
          ,

          3+t
          ,∴3+t=1,∴
          (II)…(10分)

          點(diǎn)評(píng):本題是中檔題,考查向量的數(shù)量積,三角函數(shù)的化簡(jiǎn)求值,解析式的求法,三角函數(shù)的單調(diào)性的應(yīng)用,考查計(jì)算能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          若向量,在函數(shù)的圖象中,對(duì)稱中心到對(duì)稱軸的最小距離為且當(dāng)的最大值為1。

             (I)求函數(shù)的解析式;

             (II)求函數(shù)的單調(diào)遞增區(qū)間。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省新鄉(xiāng)市衛(wèi)輝一中高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          若向量,在函數(shù)的圖象中,對(duì)稱中心到對(duì)稱軸的最小距離為,且當(dāng)的最大值為1.
          (Ⅰ)求函數(shù)f(x)的解析式;
          (Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省濟(jì)寧市微山一中高三(上)10月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          若向量,在函數(shù)的圖象中,對(duì)稱中心到對(duì)稱軸的最小距離為,且當(dāng)的最大值為1.
          (Ⅰ)求函數(shù)f(x)的解析式;
          (Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年安徽省高三質(zhì)量檢測(cè)數(shù)學(xué)試卷3(理科)(解析版) 題型:解答題

          若向量,在函數(shù)的圖象中,對(duì)稱中心到對(duì)稱軸的最小距離為,且當(dāng)的最大值為1.
          (Ⅰ)求函數(shù)f(x)的解析式;
          (Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案