日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在底面是菱形的四棱錐 P-ABCD中,∠ABC=60°,PA⊥平面ABCD,點(diǎn)E、F、G分別為CD、PD、PB的中點(diǎn).PA=AD=2.
          (1)證明:PC∥平面FAE;
          (2)求二面角F-AE-D的平面角的正切值.
          分析:(1)利用三角形中位線性質(zhì),可得PC∥EF,利用線面平行的判定,即可得出結(jié)論;
          (2)設(shè)H,M分別為AE,AD的中點(diǎn),連接FM,MH,證明∠FHM為二面角F-AE-D的平面角,即可求出二面角F-AE-D的平面角的正切值.
          解答:(1)證明:∵點(diǎn)E、F分別為CD、PD的中點(diǎn),
          ∴PC∥EF
          ∵PC?平面FAE,EF?平面FAE,
          ∴PC∥平面FAE;
          (2)解:由題意,CD⊥AE
          設(shè)H,M分別為AE,AD的中點(diǎn),連接FM,MH
          ∵F是PD的中點(diǎn),
          ∴FM∥PA,MH∥DE
          ∵PA⊥平面ABCD,
          ∴FM⊥平面ABCD,
          ∵CD⊥AE,
          ∴MH⊥AE
          ∴∠FHM為二面角F-AE-D的平面角
          ∵PA=AD=2,
          ∴在直角△FMH中,F(xiàn)M=1,MH=
          1
          2

          ∴tan∠FHM=
          FM
          MH
          =2,
          即二面角F-AE-D的平面角的正切值為2.
          點(diǎn)評(píng):本題考查線面平行,考查面面角,考查學(xué)生分析解決問題的能力,考查學(xué)生的計(jì)算能力,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
          2
          a
          ,點(diǎn)E在PD上,且PE:ED=2:1.
          (Ⅰ)證明PA⊥平面ABCD;
          (Ⅱ)求以AC為棱,EAC與DAC為面的二面角θ的大;
          (Ⅲ)在棱PC上是否存在一點(diǎn)F,使BF∥平面AEC?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
          2
          a,點(diǎn)E在PD上,且PE:ED=2:1.
          (Ⅰ)求二面角E-AC-D的大。
          (Ⅱ)在棱PC上是否存在一點(diǎn)F,使BF∥平面AEC?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在底面是菱形的四棱錐S-ABCD中,∠ABC=60°,SA=AB=a,SB=SD=
          2
          SA,點(diǎn)P在SD上,且SD=3PD.
          (1)證明SA⊥平面ABCD;
          (2)設(shè)E是SC的中點(diǎn),求證BE∥平面APC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=2,PB=PD=2
          2
          ,點(diǎn)F是PC的中點(diǎn).
          (Ⅰ)求證:PC⊥BD;
          (Ⅱ)求BF與平面ABCD所成角的大;
          (Ⅲ)若點(diǎn)E在棱PD上,當(dāng)
          PE
          PD
          為多少時(shí)二面角E-AC-D的大小為
          π
          6
          ?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案