日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 圓C的方程為x2+y2-2x+4y-4=0,該圓與直線l:2x-y+1=0相交于A、B兩點(diǎn).
          (1)求圓心C到直線l的距離;
          (2)求△ABC的面積.
          分析:(1)把圓C的方程化為標(biāo)準(zhǔn)方程,求得圓心C的坐標(biāo)和半徑等,利用點(diǎn)到直線的距離公式求得圓心到直線l:2x-y+1=0的距離d 的值.
          (2)根據(jù)弦長(zhǎng)公式求得弦長(zhǎng)AB的值,再根據(jù)△ABC的面積為
          1
          2
          •AB•d
          ,運(yùn)算求得結(jié)果.
          解答:解:(1)圓C的方程為x2+y2-2x+4y-4=0即 (x-1)2+(y+2)2=9,表示以C(1,-2)為圓心,半徑等于3的圓.
          圓心到直線l:2x-y+1=0的距離d=
          |2+2+1|
          5
          =
          5

          (2)根據(jù)弦長(zhǎng)公式求得AB=2
          9-5
          =4,故△ABC的面積為
          1
          2
          •AB•d
          =2
          5
          點(diǎn)評(píng):本題主要考查直線和圓的位置關(guān)系,點(diǎn)到直線的距離公式,弦長(zhǎng)公式的應(yīng)用,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知點(diǎn)A(x1,y1),B(x2,y2)(x1x2≠0)是拋物線y2=2px(p>0)上的兩個(gè)動(dòng)點(diǎn),O是坐標(biāo)原點(diǎn),向量
          OA
          ,
          OB
          滿足|
          OA
          +
          OB
          |=|
          OA
          -
          OB
          |
          ,設(shè)圓C的方程為x2+y2-(x1+x2)x-(y1+y2)y=0.
          (1)證明線段AB是圓C的直徑;
          (2)當(dāng)圓C的圓心到直線x-2y=0的距離的最小值為
          2
          5
          5
          時(shí),求p的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•浙江二模)在平面直角坐標(biāo)系xOy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓C有公共點(diǎn),則k的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知圓C與圓(x-1)2+y2=1關(guān)于直線y=-x對(duì)稱(chēng),則圓C的方程為
          x2+(y+1)2=1
          x2+(y+1)2=1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•石家莊二模)在平面直角坐標(biāo)系xoy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓C有公共點(diǎn),則實(shí)數(shù)k的最大值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知圓C的方程為x2+(y-4)2=4,點(diǎn)O是坐標(biāo)原點(diǎn).直線l:y=kx與圓C交于M,N兩點(diǎn).

          (1)求k的取值范圍.

          (2)設(shè)Q(m,n)是線段MN上的點(diǎn),且=+.請(qǐng)將n表示為m的函數(shù).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案