日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. .如圖,在平面直角坐標(biāo)系中,,,,設(shè)的外接圓圓心為E.

          (1)若⊙E與直線CD相切,求實(shí)數(shù)a的值;
          (2)設(shè)點(diǎn)在圓上,使的面積等于12的點(diǎn)有且只有三個(gè),試問(wèn)這樣的⊙E是否存在,若存在,求出⊙E的標(biāo)準(zhǔn)方程;若不存在,說(shuō)明理由.
          解:(1)直線方程為,圓心,半徑.
          由題意得,解得……6分
          (2)∵,
          ∴當(dāng)面積為時(shí),點(diǎn)到直線的距離為,
          又圓心E到直線CD距離為(定值),要使的面積等于12的點(diǎn)有且只有三個(gè),只須圓E半徑,解得,
          此時(shí),⊙E的標(biāo)準(zhǔn)方程為  14分
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          已知點(diǎn)及拋物線,若拋物線上點(diǎn)滿足,則
          的最大值為
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          若點(diǎn)到點(diǎn)的距離比它到直線的距離小1,則點(diǎn)的軌跡方程是(。
          A.B.
          C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          在平面直角坐標(biāo)系中,設(shè)點(diǎn),以線段為直徑的圓經(jīng)過(guò)原點(diǎn).
          (Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
          (Ⅱ)過(guò)點(diǎn)的直線與軌跡交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,試判斷直線是否恒過(guò)一定點(diǎn),并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          我國(guó)于2010年10月1日成功發(fā)射嫦娥二號(hào)衛(wèi)星,衛(wèi)星飛行約兩小時(shí)到達(dá)月球,到達(dá)月球以后,經(jīng)過(guò)幾次變軌將繞月球以橢圓型軌道飛行,其軌跡是以月球的月心為一焦點(diǎn)的橢圓。若第一次變軌前衛(wèi)星的近月點(diǎn)到月心的距離為m,遠(yuǎn)月點(diǎn)到月心的距離為n,第二次變軌后兩距離分別為2m,2n.則第一次變軌前的橢圓離心率比第二次變軌后的橢圓離心率 (   )
          A.變大B.變小C.不變D.與的大小有關(guān)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本小題滿分14分)
          平面直角坐標(biāo)系中,已知直線:,定點(diǎn),動(dòng)點(diǎn)到直線的距離是到定點(diǎn)的距離的2倍.
          (1)求動(dòng)點(diǎn)的軌跡的方程;
          (2)若為軌跡上的點(diǎn),以為圓心,長(zhǎng)為半徑作圓,若過(guò)點(diǎn)可作圓的兩條切線,,為切點(diǎn)),求四邊形面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          (本小題滿分14分)
          已知雙曲線和圓(其中原點(diǎn)為圓心),過(guò)雙曲線上一點(diǎn)引圓的兩條切線,切點(diǎn)分別為、
          (1)若雙曲線上存在點(diǎn),使得,求雙曲線離心率的取值范圍;
          (2)求直線的方程;
          (3)求三角形面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          .設(shè),分別為具有公共焦點(diǎn)的橢圓和雙曲線的離心率,為兩曲線的一個(gè)公共點(diǎn),且滿足,則的值為
          A.B.1C.2D.不確定

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          、極坐標(biāo)方程ρcos2θ=1所表示的曲線是 ( )
          A.兩條相交直線B.圓C.橢圓D.雙曲線

          查看答案和解析>>

          同步練習(xí)冊(cè)答案