日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)=ax-
          bx
          ,曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0.
          (1)求f(x)的解析式;
          (2)討論函數(shù)f(x)的單調(diào)性.
          分析:(1)欲求函數(shù)f(x)的解析式,只須求出切線斜率的值及f(2),列出方程組即可;
          (2)先求出函數(shù)的導數(shù),再根據(jù)導函數(shù)大于0對應區(qū)間是單調(diào)遞增區(qū)間;導函數(shù)小于0對應區(qū)間是單調(diào)遞減區(qū)間.
          解答:解:(1)方程7x-4y-12=0可化為y=
          7
          4
          x-3

          當x=2時,y=
          1
          2
          .又f′(x)=a+
          b
          x2

          于是
          2a-
          b
          2
          =
          1
          2
          a+
          b
          4
          =
          7
          4
          解得
          a=1
          b=3
          ,故f(x)=x-
          3
          x

          (2)由f(x)=x-
          3
          x
          得:f′(x)=1+
          3
          x2
          ,當x≠0時,恒大于0,
          ∴函數(shù)f(x)在區(qū)間(-∞,0)和(0,+∞)上都是單調(diào)遞增函數(shù).
          點評:本題主要考查導數(shù)的幾何意義及利用導數(shù)求函數(shù)的單調(diào)區(qū)間.屬于基礎(chǔ)題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          設(shè)函數(shù)f(x)=ax+
          a+1
          x
           
          (a>0)
          ,g(x)=4-x,已知滿足f(x)=g(x)的x有且只有一個.
          (Ⅰ)求a的值;
          (Ⅱ)若f(x)+
          m
          x
          >1
          對一切x>0恒成立,求m的取值范圍;
          (Ⅲ)若函數(shù)h(x)=k-f(x)-g(x)(k∈R)在[m,n]上的值域為[m,n](其中n>m>0),求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)函數(shù)f(x)=ax-
          bx
          ,曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0,
          (1)求y=f(x)的解析式,并求其單調(diào)區(qū)間;
          (2)用陰影標出曲線y=f(x)與此切線以及x軸所圍成的圖形,并求此圖形的面積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)函數(shù)f(x)=
          ax-1x+1
          ;其中a∈R

          (Ⅰ)解不等式f(x)≤1;
          (Ⅱ)求a的取值范圍,使f(x)在區(qū)間(0,+∞)上是單調(diào)減函數(shù).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)函數(shù)f(x)=ax-
          bx
          ,曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0.
          (1)求f(x)的解析式;
          (2)求函數(shù)f(x)的單調(diào)區(qū)間.

          查看答案和解析>>

          同步練習冊答案