日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 過直線y=x上的一點作圓x2+(y-4)2=2的兩條切線l1,l2,當l1與l2關(guān)于y=x對稱時,l1與l2的夾角為
          60°
          60°
          分析:根據(jù)題意畫出圖形,由過直線y=x上點A作圓B的兩條切線關(guān)于y=x對稱,得到BA與y=x垂直,且∠BAD=∠BAC,根據(jù)切線性質(zhì)得到∠BCA為直角,然后利用點直線的距離公式求出圓心B到直線y=x的距離即為|AB|,而|BC|為圓的半徑長,根據(jù)一直角邊等于斜邊的一半,這條直角邊所對的角為30°,得到∠BAD=∠BAC=30°,進而求出∠CAD的度數(shù),即為兩切線的夾角.
          解答:解:解:根據(jù)題意畫出圖形,如圖所示:
          由圓的方程得到圓心B(0,4),圓的半徑r=|BC|=|BD|=
          2
          ,
          根據(jù)兩條切線關(guān)于y=x對稱,得到BA⊥直線y=x,
          所以|BA|=
          |0-4|
          2
          =2
          2
          ,
          又直線AC和直線AD都為圓B的切線,切點分別為C和D,
          所以BC⊥AC,BD⊥AD,即∠BCA=∠BDA=90°,
          在Rt△ABC和Rt△ADB中,BC=BD=
          2
          ,AB=2
          2
          ,
          所以∠BAD=∠BAC=30°,
          則∠CAD=60°,即兩切線的夾角為60°.
          故答案為:60°
          點評:此題考查了直線與圓的位置關(guān)系,直角三角形的性質(zhì),切線的性質(zhì)以及點到直線的距離公式.要求學(xué)生利用數(shù)形結(jié)合的思想,借助圖形,充分利用對稱性質(zhì)來解決問題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          過直線y=x上的一點作圓x2+(y-4)2=2的兩條切線L1、L2,當L1與L2關(guān)于y=x對稱時,L1與L2的夾角為( 。
          A、30°B、45°C、60°D、90°

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          過直線y=x上的一點P作圓(x-5)2+(y-1)2=2的兩條切線l1,l2,A,B為切點,當直線l1,l2關(guān)于直線y=x對稱時,∠APB=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          過直線y=x上的一點P作圓(x-5)2+(y-1)2=2的兩條切線l1,l2,A,B為切點,當直線l1,l2關(guān)于直線y=x對稱時,則∠APB=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          過直線y=x上的一點作圓(x-5)2+(y-1)2=2的兩條切線l1、l2,當直線l1、l2關(guān)于y=x對稱時,它們之所成的銳角的大。ā 。

          查看答案和解析>>

          同步練習(xí)冊答案