日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分10分)數(shù)學(xué)的美是令人驚異的!如三位數(shù)153,它滿足153=13+53+33,即這個整數(shù)等于它各位上的數(shù)字的立方的和,我們稱這樣的數(shù)為“水仙花數(shù)”.請您設(shè)計一個算法,找出大于100,小于1000的所有“水仙花數(shù)”.
          (1)用自然語言寫出算法;
          (2)畫出流程圖.
          分析:(1)由于需要判斷大于100,小于1 000的整數(shù)是否滿足等于它各位上的數(shù)字的立方的和,所以需要用循環(huán)結(jié)構(gòu),應(yīng)用循環(huán)結(jié)構(gòu),通過通過判斷“是否滿足等于它各位上的數(shù)字的立方的和”,輸出“水仙花數(shù)”,寫出算法.
          (2)依據(jù)(1)中寫出的算法,畫出框圖.
          解答:解:(1)算法如下:
          第一步,i=101.
          第二步,如果i不大于999,則執(zhí)行第三步,否則算法結(jié)束.
          第三步,若這個數(shù)i等于它各位上的數(shù)字的立方的和,則輸出這個數(shù).
          第四步,i=i+1,返回第二步.
          (2)程序框圖,如右圖所示.
          點評:根據(jù)流程圖(或偽代碼)寫程序的運行結(jié)果或在判斷框填上符合條件的式子,是算法這一模塊常見的題型.其基本處理方法是:①分析流程圖(或偽代碼),從流程圖(或偽代碼)中分析出計算的類型;②建立數(shù)學(xué)模型,根據(jù)第一步分析的結(jié)果,選擇恰當(dāng)?shù)臄?shù)學(xué)模型;③解模.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (選做題)本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,若多做,則按作答的前兩題評分,解答時應(yīng)寫出文字說明、證明過程或演算步驟.
          A.[選修4-1:幾何證明選講]
          已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(不與點A,C重合),延長BD至點E.
          求證:AD的延長線平分∠CDE
          B.[選修4-2:矩陣與變換]
          已知矩陣A=
          12
          -14

          (1)求A的逆矩陣A-1;
          (2)求A的特征值和特征向量.
          C.[選修4-4:坐標(biāo)系與參數(shù)方程]
          已知曲線C的極坐標(biāo)方程為ρ=4sinθ,以極點為原點,極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
          x=
          1
          2
          t
          y=
          3
          2
          t+1
          (t為參數(shù)),求直線l被曲線C截得的線段長度.
          D.[選修4-5,不等式選講](本小題滿分10分)
          設(shè)a,b,c均為正實數(shù),求證:
          1
          2a
          +
          1
          2b
          +
          1
          2c
          1
          b+c
          +
          1
          c+a
          +
          1
          a+b

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          本題包括(1)、(2)、(3)、(4)四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)答,
          若多做,則按作答的前兩題評分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.
          (1)、選修4-1:幾何證明選講
          如圖,∠PAQ是直角,圓O與AP相切于點T,與AQ相交于兩點B,C.求證:BT平分∠OBA
          (2)選修4-2:矩陣與變換(本小題滿分10分)
          若點A(2,2)在矩陣M=
          cosα-sinα
          sinαcosα
          對應(yīng)變換的作用下得到的點為B(-2,2),求矩陣M的逆矩陣
          (3)選修4-2:矩陣與變換(本小題滿分10分)
          在極坐標(biāo)系中,A為曲線ρ2+2ρcosθ-3=0上的動點,B為直線ρcosθ+ρsinθ-7=0上的動點,求AB的最小值.
          (4)選修4-5:不等式選講(本小題滿分10分)
          已知a1,a2…an都是正數(shù),且a1•a2…an=1,求證:(2+a1)(2+a2)…(2+an)≥3n

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          必做題:(本小題滿分10分,請在答題指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟)
          已知an(n∈N*)是二項式(2+x)n的展開式中x的一次項的系數(shù).
          (Ⅰ)求an;
          (Ⅱ)是否存在等差數(shù)列{bn},使an=b1cn1+b2cn2+b3cn3+…+bncnn對一切正整數(shù)n都成立?并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (選修4-2:矩陣與變換)(本小題滿分10分)
          求矩陣A=
          32
          21
          的逆矩陣.

          查看答案和解析>>

          同步練習(xí)冊答案