日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)的定義域?yàn)镮,導(dǎo)數(shù)fn(x)滿(mǎn)足0<f(x)<2且fn(x)≠1,常數(shù)c1為方程f(x)-x=0的實(shí)數(shù)根,常數(shù)c2為方程f(x)-2x=0的實(shí)數(shù)根.
          (1)若對(duì)任意[a,b]⊆I,存在x0∈(a,b),使等式f(b)-f(a)=(b-a)fn(x0)成立.求證:方程f(x)-x=0不存在異于c1的實(shí)數(shù)根;
          (2)求證:當(dāng)x>c2時(shí),總有f(x)<2x成立;
          (3)對(duì)任意x1、x2,若滿(mǎn)足|x1-c1|<1,|x2-c1|<1,求證:|f(x1)-f(x2)|<4.
          證明:(1)假設(shè)方程f(x)-x=0有異于c1的實(shí)根m,即f(m)=m,
          則有m-c1=f(m)-f(c1)=(m-c1)fn(x0)成立.
          因?yàn)閙≠c1,所以必有fn(x0)=1,這與fn(x)≠1矛盾,
          因此方程f(x)-x=0不存在異于c1的實(shí)數(shù)根.…(4分)
          (2)令h(x)=f(x)-2x,
          ∵h(yuǎn)n(x)=fn(x)-2<0,∴函數(shù)h(x)為減函數(shù).
          又∵h(yuǎn)(c2)=f(c2)-2c2=0,∴當(dāng)x>c2時(shí),h(x)<0,即f(x)<2x成立.…(8分)
          (3)不妨設(shè)x1≤x2,∵fn(x)>0,∴f(x)為增函數(shù),即f(x1)≤f(x2).
          又∵fn(x)<2,∴函數(shù)f(x)-2x為減函數(shù),即f(x1)-2x1≥f(x2)-2x2
          ∴0≤f(x2)-f(x1)≤2(x2-x1).
          即|f(x2)-f(x1)|≤2|x2-x1|.
          ∵|x2-x1|=|x2-c1+c1-x1|≤|x2-c1|+|x1-c1|<2,
          ∴|f(x1)-f(x2)|<4.…(15分)
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=log3
          3
          x
          1-x
          ,M(x1y1),N(x2y2)
          是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
          1
          2
          的點(diǎn)P滿(mǎn)足2
          OP
          =
          OM
          +
          ON
          (O為坐標(biāo)原點(diǎn)).
          (Ⅰ)求證:y1+y2為定值;
          (Ⅱ)若Sn=f(
          1
          n
          )+f(
          2
          n
          )+…+f(
          n-1
          n
          )
          ,其中n∈N*,且n≥2,求Sn;
          (Ⅲ)已知an=
          1
          6
          ,                          n=1
          1
          4(Sn+1)(Sn+1+1)
          ,n≥2
          ,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          下列說(shuō)法正確的有( 。﹤(gè).
          ①已知函數(shù)f(x)在(a,b)內(nèi)可導(dǎo),若f(x)在(a,b)內(nèi)單調(diào)遞增,則對(duì)任意的?x∈(a,b),有f′(x)>0.
          ②函數(shù)f(x)圖象在點(diǎn)P處的切線(xiàn)存在,則函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在;反之若函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在,則函數(shù)f(x)圖象在點(diǎn)P處的切線(xiàn)存在.
          ③因?yàn)?>2,所以3+i>2+i,其中i為虛數(shù)單位.
          ④定積分定義可以分為:分割、近似代替、求和、取極限四步,對(duì)求和In=
          n
          i=1
          f(ξi)△x
          中ξi的選取是任意的,且In僅于n有關(guān).
          ⑤已知2i-3是方程2x2+px+q=0的一個(gè)根,則實(shí)數(shù)p,q的值分別是12,26.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=sin(2x-
          π
          6
          ),g(x)=sin(2x+
          π
          3
          ),直線(xiàn)y=m與兩個(gè)相鄰函數(shù)的交點(diǎn)為A,B,若m變化時(shí),AB的長(zhǎng)度是一個(gè)定值,則AB的值是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線(xiàn)C.
          (i)求函數(shù)f(x)的單調(diào)區(qū)間;
          (ii)證明:若對(duì)于任意非零實(shí)數(shù)x1,曲線(xiàn)C與其在點(diǎn)P1(x1,f(x1))處的切線(xiàn)交于另一點(diǎn)P2(x2,f(x2)),曲線(xiàn)C與其在點(diǎn)P2(x2,f(x2))處的切線(xiàn)交于另一點(diǎn)P3(x3,f(x3)),線(xiàn)段P1P2,P2P3與曲線(xiàn)C所圍成封閉圖形的面積記為S1,S2.則
          S1S2
          為定值;
          (Ⅱ)對(duì)于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請(qǐng)給出類(lèi)似于(Ⅰ)(ii)的正確命題,并予以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=x3-ax+b存在極值點(diǎn).
          (1)求a的取值范圍;
          (2)過(guò)曲線(xiàn)y=f(x)外的點(diǎn)P(1,0)作曲線(xiàn)y=f(x)的切線(xiàn),所作切線(xiàn)恰有兩條,切點(diǎn)分別為A、B.
          (ⅰ)證明:a=b;
          (ⅱ)請(qǐng)問(wèn)△PAB的面積是否為定值?若是,求此定值;若不是求出面積的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案