日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),為直線的傾斜角),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          (1)寫出曲線的直角坐標(biāo)方程,并求時直線的普通方程;

          (2)直線和曲線交于兩點,點的直角坐標(biāo)為,求的最大值.

          【答案】1:x2+y2﹣4y=0,;(2)

          【解析】

          (1)把=4sinθ兩邊同時乘以,然后結(jié)合極坐標(biāo)與直角坐標(biāo)的互化公式可得曲線C的直角坐標(biāo)方程,由直線的參數(shù)方程可知直線過定點,并求得直線的斜率,即可寫出直線的普通方程;

          (2)把直線的參數(shù)方程代入曲線C的普通方程,化為關(guān)于t的一元二次方程,利用判別式、根與系數(shù)的關(guān)系及此時t的幾何意義求解即可.

          (1)由=4sinθ,得2=4ρsinθ,∴曲線的直角坐標(biāo)方程為x2+y2﹣4y=0.

          當(dāng)a=時,直線過定點(2,3),斜率k=﹣

          ∴直線的普通方程為y﹣3=﹣,即;

          (2)把直線的參數(shù)方程為代入x2+y2﹣4y=0,

          得t2+(2sina+4cosa)t+1=0.設(shè)的參數(shù)分別為t1,t2.

          所以t1+t2=﹣(2sina+4cosa),t1t2=1,則t1與t2同號且小于0,

          由△=(2sina+4cosa)2﹣4>0,得2sina+4cosa<﹣2或2sina+4cosa>2.

          ∴|PA|+|PB|=﹣(t1+t2)=2sina+4cosa=(tanθ=2).

          ∴|PA|+|PB|的最大值為

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】11”促銷活動中,某商場為了吸引顧客,搞好促銷活動,采用雙色球定折扣的方式促銷,即:在紅、黃的兩個紙箱中分別裝有大小完全相同的紅、黃球各5個,每種顏色的5個球上標(biāo)有1,2,3,4,55個數(shù)字,顧客結(jié)賬時,先分別從紅、黃的兩個紙箱中各取一球,按兩個球的數(shù)字之和為折扣打折,如,就按3折付款,并規(guī)定取球后不再增加商品.按此規(guī)定,顧客享有6折及以下折扣的概率是( 。

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖①,在矩形ABCD中,AB2,BC1ECD的中點,將三角形ADE沿AE翻折到圖②的位置,使得平面AED⊥平面ABC

          1)在線段BD'上確定點F,使得CF∥平面AED',并證明;

          2)求△AED'與△BCD'所在平面構(gòu)成的銳二面角的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對某校高三年級100名學(xué)生的視力情況進行統(tǒng)計(如果兩眼視力不同,取較低者統(tǒng)計),得到如圖所示的頻率分布直方圖,已知從這100人中隨機抽取1人,其視力在的概率為.

          1)求a,b的值;

          2)若報考高校A專業(yè)的資格為:任何一眼裸眼視力不低于5.0,已知在中有的學(xué)生裸眼視力不低于5.0.現(xiàn)用分層抽樣的方法從中抽取4名同學(xué),設(shè)這4人中有資格(僅考慮視力)考A專業(yè)的人數(shù)為隨機變量ξ,求ξ的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】支付寶和微信支付是目前市場占有率較高的支付方式,某第三方調(diào)研機構(gòu)對使用這兩種支付方式的人數(shù)作了對比.從全國隨機抽取了100個地區(qū)作為研究樣本,計算了各個地區(qū)樣本的使用人數(shù),其頻率分布直方圖如圖.

          1)記A表示事件微信支付人數(shù)低于50千人,估計A的概率;

          2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為支付人數(shù)與支付方式有關(guān);

          3)根據(jù)支付人數(shù)的頻率分布直方圖,對兩種支付方式的優(yōu)劣進行比較.

          附:

          K2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)當(dāng)時,求函數(shù)上的最小值和最大值;

          2)當(dāng)時,討論函數(shù)的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知AB、C三個箱子中各裝有2個完全相同的球,每個箱子里的球,有一個球標(biāo)著號碼1,另一個球標(biāo)著號碼2.現(xiàn)從A、B、C三個箱子中各摸出1個球.

          )若用數(shù)組中的分別表示從A、B、C三個箱子中摸出的球的號碼,請寫出數(shù)組的所有情形,并回答一共有多少種;

          )如果請您猜測摸出的這三個球的號碼之和,猜中有獎.那么猜什么數(shù)獲獎的可能性最大?請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)當(dāng)時,求處的切線方程;

          2)令,已知函數(shù)有兩個極值點,且

          ①求實數(shù)的取值范圍;

          ②若存在,使不等式對任意(取值范圍內(nèi)的值)恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù),.

          1)當(dāng)時,求的值域;

          2)當(dāng)時,不等式恒成立(的導(dǎo)函數(shù)),求實數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案