日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ((本題滿分14分)

          已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE = x,G是BC的中點.沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).

          (1)當x=2時,求證:BD⊥EG ;

          (2)若以F、B、C、D為頂點的三棱錐的體積記為,

          的最大值;

          (3)當取得最大值時,求二面角D-BF-C的余弦值.

           

          【答案】

           

          (1)略

          (2)

          (3)-

          【解析】1)方法一:∵平面平面

          AE⊥EF,∴AE⊥平面,AE⊥EF,AE⊥BE,

          又BE⊥EF,故可如圖建立空間坐標系E-xyz.

          ,又為BC的中點,BC=4,

          .則A(0,0,2),B(2,0,0),G(2,2,0),D(0,2,2),E(0,0,0),

          (-2,2,2),(2,2,0),

          (-2,2,2)(2,2,0)=0,∴.………………4分

           

          方法二:作DH⊥EF于H,連BH,GH,

          由平面平面知:DH⊥平面EBCF,

          而EG平面EBCF,故EG⊥DH.

          為平行四邊形,

          四邊形BGHE為正方形,∴EG⊥BH,BHDH=H,

          故EG⊥平面DBH,

          而BD平面DBH,∴ EG⊥BD.………4分

          (或者直接利用三垂線定理得出結(jié)果)

           

          (2)∵AD∥面BFC,

          所以 =VA-BFC

          ,

          有最大值為. ………8分

          (3)設(shè)平面DBF的法向量為,∵AE=2, B(2,0,0),D(0,2,2),

          F(0,3,0),∴………10分

          (-2,2,2),

          ,

          ,∴

          面BCF一個法向量為,………12分

          則cos<>=,………13分

          由于所求二面角D-BF-C的平面角為鈍角,所以此二面角的余弦值為-.………14分

           

           

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分14分
          A.選修4-4:極坐標與參數(shù)方程在極坐標系中,直線l 的極坐標方程為θ=
          π
          3
          (ρ∈R ),以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,曲線C的參數(shù)方程為
          x=2cosα
          y=1+cos2α
          (α 參數(shù)).求直線l 和曲線C的交點P的直角坐標.
          B.選修4-5:不等式選講
          設(shè)實數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時x,y,z 的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AEEBBC=2,上的點,且BF⊥平面ACE

          (1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題

          (本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

          (Ⅰ)若AB=[0,3],求實數(shù)m的值

          (Ⅱ)若ACRB,求實數(shù)m的取值范圍

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題

          (本題滿分14分)

          已知點是⊙上的任意一點,過垂直軸于,動點滿足。

          (1)求動點的軌跡方程; 

          (2)已知點,在動點的軌跡上是否存在兩個不重合的兩點,使 (O是坐標原點),若存在,求出直線的方程,若不存在,請說明理由。

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題

          (本題滿分14分)已知函數(shù).

          (1)求函數(shù)的定義域;

          (2)判斷的奇偶性;

          (3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使

          ;如果沒有,請說明理由?(注:區(qū)間的長度為).

           

          查看答案和解析>>

          同步練習冊答案