日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 選修4-5:不等式選講已知實數(shù)a,b,c滿足a2+2b2+3c2=24
          ①求a+2b+3c的最值;
          ②若滿足題設(shè)條件的任意實數(shù)a,b,c,不等式a+2b+3c>|x+1|-14恒成立,求實數(shù)x的取值范圍.
          分析:①首先分析題目已知a2+2b2+3c2=24,求a+2b+3c的最大值,考慮到柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2的應(yīng)用,構(gòu)造出柯西不等式求出(a+2b+3c)2的最大值開方即可得到答案.
          ②首先分析題目已知不等式a+2b+3c>|x+1|-14恒成立,求x的取值范圍,即需要k小于|x+1|+|x-2|的最小值即可.由①分析得a+2b+3c的最小值,即|x+1|-14<-1可得到答案.
          解答:解:①因為已知a、b、c是實數(shù),且a2+2b2+3c2=24
          根據(jù)柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2
          故有(a2+2b2+3c2)(12+(
          2
          ) 2
          +(
          3
          2)≥(a+2b+3c)2
          故(a+2b+3c)2≤144,即|a+2b+3c|≤12
          即a+2b+3c的最大值為12,a+2b+3c的最小值為-12;
          ②:已知不等式a+2b+3c>|x+1|-14恒成立,即需要|x+1|-14小于a+2b+3c的最小值即可.
          即|x+1|-14<-12.解得:-2<x+1<2,-3<x<1
          即:實數(shù)x的取值范圍(-3,1).
          點評:此題主要考查一般形式的柯西不等式的應(yīng)用,對于此類題目很多同學一開始就想到應(yīng)用球的參數(shù)方程求解,這個方法可行但是計算量較高,而應(yīng)用柯西不等式求解較簡單,同學們需要很好的理解掌握.此題還考查不等式恒成立的問題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          選修4-5:不等式選講
          設(shè)x,y,z∈(0,+∞),且x+y+z=1,求
          1
          x
          +
          4
          y
          +
          9
          z
          的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【選修4-5:不等式選講】
          求下列不等式的解集
          (Ⅰ)|2x-1|-|x+3|>0
          (Ⅱ)x+|2x-1|>3.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          選修4-5:不等式選講:
          設(shè)正有理數(shù)x是
          2
          的一個近似值,令y=1+
          1
          1+x

          (Ⅰ)若x>
          2
          ,求證:y<
          2

          (Ⅱ)比較y與x哪一個更接近于
          2
          ?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2011•鹽城模擬)(選修4-5:不等式選講)
          已知a,b,c為正數(shù),且a2+a2+c2=14,試求a+2b+3c的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•烏魯木齊一模)選修4-5:不等式選講
          設(shè)函數(shù),f(x)=|x-1|+|x-2|.
          (I)求證f(x)≥1;
          (II)若f(x)=
          a2+2
          a2+1
          成立,求x的取值范圍.

          查看答案和解析>>

          同步練習冊答案