日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設F1,F(xiàn)2分別是橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左、右焦點,若在直線x=
          a2
          c
          上存在點P,使線段PF1的中垂線過點F2,則橢圓的離心率的取值范圍是
          3
          3
          ,1)
          3
          3
          ,1)
          分析:設準線與x軸的交點為Q,連結PF2,根據(jù)平面幾何的知識可得|PF2|=|F1F2|=2c且|PF2|≥|QF2|,由此建立關于a、c的不等關系,化簡整理得到關于離心率e的一元二次不等式,解之即可得到橢圓離心率e的取值范圍.
          解答:解:設準線與x軸的交點為Q,連結PF2,
          ∵PF1的中垂線過點F2,
          ∴|F1F2|=|PF2|,可得|PF2|=2c,
          ∵|QF2|=
          a2
          c
          -c,且|PF2|≥|QF2|,
          ∴2c≥
          a2
          c
          -c,兩邊都除以a得2•
          c
          a
          a
          c
          -
          c
          a
          ,
          即2e≥
          1
          e
          -e,整理得3e2≥1,解得e
          3
          3
          ,
          結合橢圓的離心率e∈(0,1),得
          3
          3
          ≤e<1.
          故答案為:(
          3
          3
          ,1).
          點評:本題給出橢圓滿足的條件,求橢圓離心率的范圍.著重考查了橢圓的標準方程與簡單幾何性質(zhì)、線段的垂直平分線性質(zhì)和不等式的解法等知識,屬于中檔題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          設F1,F(xiàn)2分別是橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的左右焦點,若橢圓C上的一點A(1,
          3
          2
          )到F1,F(xiàn)2的距離之和為4.
          (1)求橢圓方程;
          (2)若M,N是橢圓C上兩個不同的點,線段MN的垂直平分線與x軸交于點P,求證:|
          OP
          |<
          1
          2
          ;
          (3)若M,N是橢圓C上兩個不同的點,Q是橢圓C上不同于M,N的任意一點,若直線QM,QN的斜率分別為KQM•KQN.問:“點M,N關于原點對稱”是KQM•KQN=-
          3
          4
          的什么條件?證明你的結論.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2009•南匯區(qū)二模)設F1、F2分別是橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左、右焦點,其右焦點是直線y=x-1與x軸的交點,短軸的長是焦距的2倍.
          (1)求橢圓的方程;
          (2)若P是該橢圓上的一個動點,求
          PF1
          PF2
          的最大值和最小值;
          (3)是否存在過點A(5,0)的直線l與橢圓交于不同的兩點C、D,使得|F2C|=|F2D|?若存在,求直線l的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•安徽)設橢圓E:
          x2
          a2
          +
          y2
          1-a2
          =1
          的焦點在x軸上
          (1)若橢圓E的焦距為1,求橢圓E的方程;
          (2)設F1,F(xiàn)2分別是橢圓E的左、右焦點,P為橢圓E上第一象限內(nèi)的點,直線F2P交y軸于點Q,并且F1P⊥F1Q,證明:當a變化時,點P在某定直線上.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2009•南匯區(qū)二模)設F1、F2分別是橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左、右焦點,其右焦點是直線y=x-1與x軸的交點,短軸的長是焦距的2倍.
          (1)求橢圓的方程;
          (2)若P是該橢圓上的一個動點,求
          PF1
          PF2
          的最大值和最小值;
          (3)若P是該橢圓上的一個動點,點A(5,0),求線段AP中點M的軌跡方程.

          查看答案和解析>>

          同步練習冊答案