日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)a(0<a<1)是給定的常數(shù),f(x)是R上的奇函數(shù),且在(0,+∞)上是增函數(shù),若f(
          12
          )=0,f(logat)>0,則t的取值范圍是
           
          分析:利用條件得f(x)在(-
          1
          2
          ,0)和(
          1
          2
          ,+∞)上函數(shù)值為正,把f(logat)>0轉(zhuǎn)化為logat>
          1
          2
          或-
          1
          2
          <logat<0,再利用底數(shù)小于1的對數(shù)函數(shù)是減函數(shù)即可求t的取值范圍.
          解答:解:∵f(x)是R上的奇函數(shù),且在(0,+∞)上是增函數(shù),
          ∴在(-∞,0)上是增函數(shù),又f(
          1
          2
          )=0,
          可得f(-
          1
          2
          )=-f(
          1
          2
          )=0,
          ∴f(x)在(-
          1
          2
          ,0)和(
          1
          2
          ,+∞)上函數(shù)值為正
          ∴f(logat)>0轉(zhuǎn)化為logat>
          1
          2
          或-
          1
          2
          <logat<0,
          又∵0<a<1
          ∴l(xiāng)ogat>
          1
          2
          =logaa 
          1
          2
          ,可得0<t<
          a

          -
          1
          2
          <logat<0,1<t<
          1
          a

          故答案為(1,
          1
          a
          )∪(0,
          a
          ).
          點(diǎn)評:本題考查了函數(shù)的單調(diào)性和奇偶性的應(yīng)用,在利用單調(diào)性解題時遵循原則是:增函數(shù)自變量越大函數(shù)值越大,減函數(shù)自變量越小函數(shù)值越。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)a(0<a<1)是給定的常數(shù),f(x)是R上的奇函數(shù),且在(0,+∞)上是增函數(shù),若f(
          1
          2
          )=0
          ,f(logat)>0,則t的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:0107 模擬題 題型:解答題

          對于數(shù)列A:a1,a2,…,an,若滿足ai∈{0,1}(i=1,2,3,…,n),則稱數(shù)列A為“0-1數(shù)列”。定義變換T,T將"0-1數(shù)列"A中原有的每個1都變成0,1,原有的每個0都變成1,0;例如A:1,0,1,則T(A):0,1,1,0,0,1。設(shè)A0是"0-1數(shù)列",令A(yù)k=T(Ak-1),k=1,2,3,…,
          (Ⅰ)若數(shù)列A2:1,0,0,1,0,1,1,0,1,0,0,1,求數(shù)列A1,A0;
          (Ⅱ)若數(shù)列A0共有10項(xiàng),則數(shù)列A2中連續(xù)兩項(xiàng)相等的數(shù)對至少有多少對?請說明理由;
          (Ⅲ)若A0為0,1,記數(shù)列Ak中連續(xù)兩項(xiàng)都是0的數(shù)對個數(shù)為lk,k=1,2,3,…,求lk關(guān)于k的表達(dá)式。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年江蘇省無錫市部分學(xué)校高三4月聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

          設(shè)a(0<a<1)是給定的常數(shù),f(x)是R上的奇函數(shù),且在(0,+∝)上是增函數(shù),若f()=0,f(logat)>0,則t的取值范圍是   

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(北京卷解析版) 題型:解答題

          設(shè)A是由m×n個實(shí)數(shù)組成的m行n列的數(shù)表,滿足:每個數(shù)的絕對值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。

          對于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):

          記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

          (1)   對如下數(shù)表A,求K(A)的值;

          1

          1

          -0.8

          0.1

          -0.3

          -1

           

          (2)設(shè)數(shù)表A∈S(2,3)形如

          1

          1

          c

          a

          b

          -1

           

          求K(A)的最大值;

          (3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求K(A)的最大值。

          【解析】(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image001.png">,

          所以

          (2)  不妨設(shè).由題意得.又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image006.png">,所以,

          于是,,

              

          所以,當(dāng),且時,取得最大值1。

          (3)對于給定的正整數(shù)t,任給數(shù)表如下,

          任意改變A的行次序或列次序,或把A中的每一個數(shù)換成它的相反數(shù),所得數(shù)表

          ,并且,因此,不妨設(shè),

          。

          得定義知,,

          又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912442510881234/SYS201207091244551401982556_ST.files/image030.png">

          所以

               

               

          所以,

          對數(shù)表

          1

          1

          1

          -1

          -1

           

          ,

          綜上,對于所有的,的最大值為

           

          查看答案和解析>>