日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在三棱柱ABC-A1B1C1中,底面是正三角形,側(cè)棱AA1⊥底面ABC,且各棱長都相等點E是邊AB的中點,則直線C1E與平面BB1CC1所成角的正切值為( )
          A.
          B.
          C.
          D.
          【答案】分析:過點E作EF⊥BC于點F,連接FC1,可證明∠EC1F即為直線C1E與平面BB1CC1所成角,設(shè)各棱長為1,通過解直角三角形可求得EF,F(xiàn)C1的長,從而可求tan∠EC1F=
          解答:解:如下圖所示:過點E作EF⊥BC于點F,連接FC1,
          因為BB1∥AA1,AA1⊥底面ABC,所以BB1⊥底面ABC,
          BB1?面BC1,所以面BB1⊥底面ABC,
          所以EF⊥面BC1,則∠EC1F即為直線C1E與平面BB1CC1所成角,
          設(shè)各棱長為1,在Rt△EFB中,EF=BE•sin∠EBF=×sin60°=,BF=BE•cos∠EBF=cos60°=,
          在Rt△C1CF中,==
          所以tan∠EC1F===
          故選A.
          點評:本題考查直線與平面所成的角的求解問題,考查學(xué)生的計算能力,屬中檔題,準(zhǔn)確理解線面角的定義是解決該類題目的基礎(chǔ).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知三棱柱ABC-A1B1C1的三視圖如圖所示,其中主視圖AA1B1B和左視圖B1BCC1均為矩形,在俯視圖△A1B1C1中,A1C1=3,A1B1=5,cos∠A1=
          35

          (1)在三棱柱ABC-A1B1C1中,求證:BC⊥AC1;
          (2)在三棱柱ABC-A1B1C1中,若D是底邊AB的中點,求證:AC1∥平面CDB1
          (3)若三棱柱的高為5,求三視圖中左視圖的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖:在正三棱柱ABC-A1 B1 C1中,AB=
          AA13
          =a,E,F(xiàn)分別是BB1,CC1上的點且BE=a,CF=2a.
          (Ⅰ)求證:面AEF⊥面ACF;
          (Ⅱ)求三棱錐A1-AEF的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=
          5
          ,BC=4,在A1在底面ABC的投影是線段BC的中點O.
          (1)求點C到平面A1ABB1的距離;
          (2)求二面角A-BC1-B1的余弦值;
          (3)若M,N分別為直線AA1,B1C上動點,求MN的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•江西)在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=
          5
          ,BC=4,在A1在底面ABC的投影是線段BC的中點O.
          (1)證明在側(cè)棱AA1上存在一點E,使得OE⊥平面BB1C1C,并求出AE的長;
          (2)求平面A1B1C與平面BB1C1C夾角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•北京)如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
          (Ⅰ)求證:AA1⊥平面ABC;
          (Ⅱ)求證二面角A1-BC1-B1的余弦值;
          (Ⅲ)證明:在線段BC1上存在點D,使得AD⊥A1B,并求
          BDBC1
          的值.

          查看答案和解析>>

          同步練習(xí)冊答案