日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (福建卷文20)已知{an}是正數(shù)組成的數(shù)列,a1=1,且點()(nN*)在函數(shù)y=x2+1的圖象上.

          (Ⅰ)求數(shù)列{an}的通項公式;

          (Ⅱ)若列數(shù){bn}滿足b1=1,bn+1=bn+,求證:bn       ·bn+2b2n+1.

          本小題考查等差數(shù)列、等比數(shù)列等基本知識,考查轉(zhuǎn)化與化歸思想,推理與運算能力.

          解法一:

          (Ⅰ)由已知得an+1=an+1、即an+1-an=1,又a1=1,

          所以數(shù)列{an}是以1為首項,公差為1的等差數(shù)列.

          an=1+(a-1)×1=n.

          (Ⅱ)由(Ⅰ)知:an=n從而bn+1-bn=2n.

          bn=(bn-bn-1)+(bn-1-bn-2)+­­­­­­­­­­­···+(b2-b1)+b1

          =2n-1+2n-2+···+2+1==2n-1.

          因為bn·bn+2-b=(2n-1)(2n+2-1)-(2n-1-1)2

          =(22n+2-2n+2-2n+1)-(22n+2-2-2n+1-1)

          =-5·2n+4·2n

          =-2n<0,

          所以bn·bn+2<b,

          解法二:(Ⅰ)同解法一.

          (Ⅱ)因為b2=1,

          bn·bn+2- b=(bn+1-2n)(bn+1+2n+1)- b

                      =2n+1·bn-1-2n·bn+1-2n·2n+1

          =2nbn+1-2n+1

          =2nbn+2n-2n+1

          =2nbn-2n

          =…

          =2nb1-2)

          =-2n〈0,

          所以bn-bn+2<b2n+1

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          (福建卷文20)已知{an}是正數(shù)組成的數(shù)列,a1=1,且點()(nN*)在函數(shù)y=x2+1的圖象上.

          (Ⅰ)求數(shù)列{an}的通項公式;

          (Ⅱ)若列數(shù){bn}滿足b1=1,bn+1=bn+,求證:bn       ·bn+2b2n+1.

          查看答案和解析>>

          同步練習冊答案