日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題14分)已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線相切,分別是橢圓的左右兩個(gè)頂點(diǎn),為橢圓上的動(dòng)點(diǎn).
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)若均不重合,設(shè)直線的斜率分別為,求的值。

          (1)(2)

          解析試題分析:(1)由題意可得圓的方程為直線與圓相切,

          所以橢圓方程為 
          (2)設(shè)



          的值為
          考點(diǎn):橢圓的標(biāo)準(zhǔn)方程的求法;橢圓的簡單性質(zhì);圓的簡單性質(zhì);點(diǎn)到直線的距離公式;斜率公式;
          點(diǎn)評:熟記橢圓中的關(guān)系式,并靈活應(yīng)用。注意橢圓中的關(guān)系式與雙曲線中的關(guān)系式的不同。此題屬于基礎(chǔ)題型。

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          求過兩直線的交點(diǎn),且滿足下列條件的直線的方程.
          (Ⅰ)和直線垂直;
          (Ⅱ)在軸,軸上的截距相等.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本題滿分12分)
          中心在原點(diǎn),長半軸長與短半軸長的和為9,離心率為0.6,求橢圓的標(biāo)準(zhǔn)方程。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (12分)已知橢圓中心在原點(diǎn),一個(gè)焦點(diǎn)為,且長軸長與短軸長的比是。
          (1)求橢圓的方程;(5分)
          (2)是否存在斜率為的直線,使直線與橢圓有公共點(diǎn),且原點(diǎn)與直線的距離等于4;若存在,求出直線的方程,若不存在,說明理由。(7分)。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分)已知橢圓,離心率為的橢圓經(jīng)過點(diǎn).
          (1)求該橢圓的標(biāo)準(zhǔn)方程;
          (2)過橢圓的一個(gè)焦點(diǎn)且互相垂直的直線分別與橢圓交于,是否存在常數(shù),使得?若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本題滿分12分)
          已知橢圓的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,直線與該橢圓相交于,且,,求橢圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知拋物線,焦點(diǎn)為,頂點(diǎn)為,點(diǎn)在拋物線上移動(dòng),的中點(diǎn),的中點(diǎn),求點(diǎn)的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本題滿分12分)
          在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn),的距離之和等于,設(shè)點(diǎn)的軌跡為
          (1)求曲線的方程;
          (2)過點(diǎn)作兩條互相垂直的直線分別與曲線交于
          ①以線段為直徑的圓過能否過坐標(biāo)原點(diǎn),若能求出此時(shí)的值,若不能說明理由;
          ②求四邊形面積的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分14分)
          已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上. 且經(jīng)過點(diǎn),
          (1)求拋物線的方程;
          (2)若動(dòng)直線過點(diǎn),交拋物線兩點(diǎn),是否存在垂直于軸的直線被以為直徑的圓截得的弦長為定值?若存在,求出的方程;若不存在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案