日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在P是直角梯形ABCD所在平面外一點,PA⊥平面ABCD,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,PD與底面成30°角,BE⊥PD于E,求直線BE與平面PAD所成的角.
          分析:先證明AB⊥平面PAD,可得∠BEA為BE與平面PAD所成的角.根據(jù)條件解直角三角形ABE,求得∠BEA的大。
          解答:解:∵PA⊥平面ABCD,∴∠PDA為PD與底面所成的角,PA⊥AB.
          ∵∠BAD=90°,∴AB⊥AD.
          再由PA∩AD=A,可得AB⊥平面PAD,AE是BE在平面PAD內(nèi)的射影,∴∠BEA為BE與平面PAD所成的角.
          ∵BE⊥PD,∴AE⊥PD,
          在Rt△PAD中,∠PDA=30°,AD=2a,
          ∴AE=a=AB,∠BEA=45°,即直線BE與平面PAD所成的角為45°.
          點評:本題主要考查直線和平面垂直的判定定理、性質(zhì)定理的應用,直線和平面所成的角的定義和求法,找出直線和平面所成的角,是解題的關鍵,屬于中檔題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在底面是直角梯形的四棱錐P-ABCD中,AD∥BC,∠ABC=90°,且∠ADC=arcsin
          5
          5
          ,又PA⊥平面ABCD,AD=3AB=3PA=3a,
          (I)求二面角P-CD-A的正切值;
          (II)求點A到平面PBC的距離.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖所示,已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2,CD=1,側(cè)面PBC⊥底面ABCD,點F在線段AP上,且滿足
          PF
          PA

          (1)證明:PA⊥BD;
          (2)當λ取何值時,直線DF與平面ABCD所成角為30°?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          在四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠ABC=90°,AB=PB=PC=BC=2CD,平面PBC⊥平面ABCD.
          (Ⅰ)求證:AB⊥平面PBC;
          (Ⅱ)求平面PAD和平面BCP所成二面角(小于90°)的大;
          (Ⅲ)在棱PB上是否存在點M使得CM∥平面PAD?若存在,求
          PMPB
          的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在四棱錐P-ABCD中,已知PA⊥平面ABCD,PB與平面ABC成60°的角,底面ABCD是直角梯形,∠ABC=∠BAD=90°,AB=BC=
          1
          2
          AD.
          (1)求證:平面PCD⊥平面PAC;
          (2)設E是棱PD上一點,且PE=
          1
          3
          PD,求異面直線AE與PB所成的角.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)在棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD是直角梯形,∠ABC=∠BAD=90°,AD=2AB=2BC=4,P是A1D1的中點.
          (1)求證:BP∥平面ACD1
          (2)若M是AC的中點,且B1M⊥平面ACD1,求線段BB1的長.

          查看答案和解析>>

          同步練習冊答案