已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為,點(diǎn)
是點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn),過(guò)點(diǎn)
的直線交拋物線于
兩點(diǎn)。
(Ⅰ)試問(wèn)在軸上是否存在不同于點(diǎn)
的一點(diǎn)
,使得
與
軸所在的直線所成的銳角相等,若存在,求出定點(diǎn)
的坐標(biāo),若不存在說(shuō)明理由。
(Ⅱ)若的面積為
,求向量
的夾角;
(Ⅰ)存在T(1,0);(Ⅱ)向量的夾角
.
解析試題分析:(Ⅰ)試問(wèn)在軸上是否存在不同于點(diǎn)
的一點(diǎn)
,使得
與
軸所在的直線所成的銳角相等,若存在,求出定點(diǎn)
的坐標(biāo),若不存在說(shuō)明理由,這是一個(gè)探索性命題,解這一類(lèi)問(wèn)題,一般都假設(shè)其存在,若能求出
的坐標(biāo),就存在這樣的點(diǎn),若不能求出
的坐標(biāo),就不存在這樣的點(diǎn),本題假設(shè)存在
滿足題意,
與
軸所在的直線所成的銳角相等,則它們的斜率互為相反數(shù),結(jié)合直線與拋物線的位置關(guān)系,采用設(shè)而不求的方法即可解決;(Ⅱ)求向量
的夾角,可根據(jù)夾角公式
,分別求出
,與
即可.
試題解析:(Ⅰ)由題意知:拋物線方程為:且
設(shè) 直線
代入
得
,
假設(shè)存在滿足題意,則
存在T(1,0)
(Ⅱ),
(13分)
考點(diǎn):直線與拋物線位置關(guān)系,向量夾角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓過(guò)定點(diǎn)
,圓心
在拋物線
上,
、
為圓
與
軸的交點(diǎn).
(1)當(dāng)圓心是拋物線的頂點(diǎn)時(shí),求拋物線準(zhǔn)線被該圓截得的弦長(zhǎng).
(2)當(dāng)圓心在拋物線上運(yùn)動(dòng)時(shí),
是否為一定值?請(qǐng)證明你的結(jié)論.
(3)當(dāng)圓心在拋物線上運(yùn)動(dòng)時(shí),記
,
,求
的最大值,并求出此時(shí)圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓:
的離心率為
,點(diǎn)
(
,0),
(0,
)原點(diǎn)
到直線
的距離為
。
(1) 求橢圓的方程;
(2) 設(shè)點(diǎn)為(
,0),點(diǎn)
在橢圓
上(與
、
均不重合),點(diǎn)
在直線
上,若直線
的方程為
,且
,試求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的中心在坐標(biāo)原點(diǎn),短軸長(zhǎng)為4,且有一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知經(jīng)過(guò)定點(diǎn)M(2,0)且斜率不為0的直線交橢圓C于A、B兩點(diǎn),試問(wèn)在x軸上是否另存在一個(gè)定點(diǎn)P使得
始終平分
?若存在,求出
點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知兩點(diǎn)及
,點(diǎn)
在以
、
為焦點(diǎn)的橢圓
上,且
、
、
構(gòu)成等差數(shù)列.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,動(dòng)直線與橢圓
有且僅有一個(gè)公共點(diǎn),點(diǎn)
是直線
上的兩點(diǎn),且
,
. 求四邊形
面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,已知圓為圓上一動(dòng)點(diǎn),點(diǎn)
是線段
的垂直平分線與直線
的交點(diǎn).
(1)求點(diǎn)的軌跡曲線
的方程;
(2)設(shè)點(diǎn)是曲線
上任意一點(diǎn),寫(xiě)出曲線
在點(diǎn)
處的切線
的方程;(不要求證明)
(3)直線過(guò)切點(diǎn)
與直線
垂直,點(diǎn)
關(guān)于直線
的對(duì)稱點(diǎn)為
,證明:直線
恒過(guò)一定點(diǎn),并求定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知、
分別是橢圓
的左、右焦點(diǎn),右焦點(diǎn)
到上頂點(diǎn)的距離為2,若
(Ⅰ)求此橢圓的方程;
(Ⅱ)直線與橢圓
交于
兩點(diǎn),若弦
的中點(diǎn)為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上,橢圓
上的點(diǎn)到焦點(diǎn)距離的最大值為
,最小值為
.
(Ⅰ)求橢圓方程;
(Ⅱ)若直線與橢圓交于不同的兩點(diǎn)
、
,且線段
的垂直平分線過(guò)定點(diǎn)
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,F(xiàn)1,F(xiàn)2分別是橢圓C:+
=1(a>b>0)的左、右焦點(diǎn),A是橢圓C的頂點(diǎn),B是直線AF2與橢圓C的另一個(gè)交點(diǎn),∠F1AF2=60°
(1)求橢圓C的離心率;
(2)已知△AF1B的面積為40,求a,b的值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com