日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),.

          (Ⅰ)求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)當(dāng)時(shí),都有成立,求的取值范圍;

          (Ⅲ)試問過點(diǎn)可作多少條直線與曲線相切?并說明理由.

          【答案】(Ⅰ)見解析;(Ⅱ);(Ⅲ)見解析,理由見解析

          【解析】

          (Ⅰ)首先求出函數(shù)的定義域和導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)分類討論的取值范圍;當(dāng)時(shí),當(dāng)時(shí),分析的正負(fù)即可求解.

          (Ⅱ)由(Ⅰ)中的導(dǎo)函數(shù)討論是否在區(qū)間內(nèi),利用函數(shù)的單調(diào)性求出函數(shù)的最值,使即可解不等式即可.

          (Ⅲ)法一:設(shè)切點(diǎn)為,求出切線方程,從而可得,令,討論的取值范圍,分析函數(shù)的的單調(diào)性以及上的零點(diǎn)即可求解;

          法二:設(shè)切點(diǎn)為,求出切線方程,從而可得,分離參數(shù)可得,令,討論的單調(diào)性求出函數(shù)的值域,根據(jù)值域確定的范圍即可求解.

          (Ⅰ)函數(shù)的定義域?yàn)?/span>.

          1)當(dāng)時(shí),恒成立,函數(shù)上單調(diào)遞增;

          2)當(dāng)時(shí),令,得.

          當(dāng)時(shí),,函數(shù)為減函數(shù);

          當(dāng)時(shí),,函數(shù)為增函數(shù).

          綜上所述,當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為.

          當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.

          (Ⅱ)由(Ⅰ)可知,

          1)當(dāng)時(shí),即時(shí),函數(shù)在區(qū)間上為增函數(shù),

          所以在區(qū)間上,,顯然函數(shù)在區(qū)間上恒大于零;

          2)當(dāng)時(shí),即時(shí),函數(shù)上為減函數(shù),在上為增函數(shù),

          所以.

          依題意有,解得,所以.

          3)當(dāng)時(shí),即時(shí),在區(qū)間上為減函數(shù),

          所以.

          依題意有,解得,所以.

          綜上所述,當(dāng)時(shí),函數(shù)在區(qū)間上恒大于零.

          另解:當(dāng)時(shí),顯然恒成立.

          當(dāng)時(shí),恒成立恒成立的最大值.

          ,則,易知上單調(diào)遞增,

          所以最大值為,此時(shí)應(yīng)有.

          綜上,的取值范圍是.

          (Ⅲ)設(shè)切點(diǎn)為,則切線斜率,

          切線方程為.

          因?yàn)榍芯過點(diǎn),則.

          .

          ,則.

          1)當(dāng)時(shí),在區(qū)間上,,單調(diào)遞增;

          在區(qū)間上,單調(diào)遞減,

          所以函數(shù)的最大值為.

          故方程無解,即不存在滿足①式.

          因此當(dāng)時(shí),切線的條數(shù)為0.

          2)當(dāng)時(shí),在區(qū)間上,,單調(diào)遞減,在區(qū)間上,,單調(diào)遞增,

          所以函數(shù)的最小值為.

          ,則.

          上存在唯一零點(diǎn).

          ,則.

          設(shè),則.

          當(dāng)時(shí),恒成立.

          所以單調(diào)遞增,恒成立.

          所以.

          上存在唯一零點(diǎn).

          因此當(dāng)時(shí),過點(diǎn)存在兩條切線.

          3)當(dāng)時(shí),,顯然不存在過點(diǎn)的切線.

          綜上所述,當(dāng)時(shí),過點(diǎn)存在兩條切線;

          當(dāng)時(shí),不存在過點(diǎn)的切線.

          另解:設(shè)切點(diǎn)為,則切線斜率

          切線方程為.

          因?yàn)榍芯過點(diǎn),則

          .

          當(dāng)時(shí),無解.

          當(dāng)時(shí),,

          ,則,

          易知當(dāng)時(shí),;當(dāng)時(shí),,

          所以上單調(diào)遞減,在上單調(diào)遞增.

          ,且,

          故當(dāng)時(shí)有兩條切線,當(dāng)時(shí)無切線,

          即當(dāng)時(shí)有兩條切線,當(dāng)時(shí)無切線.

          綜上所述,時(shí)有兩條切線,時(shí)無切線.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓,過的直線與橢圓相交于兩點(diǎn),且與軸相交于點(diǎn).

          1)若,求直線的方程;

          2)設(shè)關(guān)于軸的對稱點(diǎn)為,證明:直線軸上的定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,橢圓的長軸長為,點(diǎn)、、為橢圓上的三個(gè)點(diǎn),為橢圓的右端點(diǎn),過中心,且,

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)設(shè)、是橢圓上位于直線同側(cè)的兩個(gè)動(dòng)點(diǎn)(異于、),且滿足,試討論直線與直線斜率之間的關(guān)系,并求證直線的斜率為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

          在極坐標(biāo)系中,O為極點(diǎn),點(diǎn)在曲線上,直線l過點(diǎn)且與垂直,垂足為P.

          1)當(dāng)時(shí),求l的極坐標(biāo)方程;

          2)當(dāng)MC上運(yùn)動(dòng)且P在線段OM上時(shí),求P點(diǎn)軌跡的極坐標(biāo)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線是曲線的切線.

          1)求函數(shù)的解析式,

          2)若,證明:對于任意,有且僅有一個(gè)零點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),函數(shù),其中,的一個(gè)極值點(diǎn),且.

          1)討論的單調(diào)性

          2)求實(shí)數(shù)a的值

          3)證明

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】近年,國家逐步推行全新的高考制度.新高考不再分文理科,某省采用模式,其中語文、數(shù)學(xué)、外語三科為必考科目,每門科目滿分均為.另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物門科目中自選門參加考試(),每門科目滿分均為.為了應(yīng)對新高考,某高中從高一年級(jí)名學(xué)生(其中男生人,女生人)中,采用分層抽樣的方法從中抽取名學(xué)生進(jìn)行調(diào)查,其中,女生抽取.

          1)求的值;

          2)學(xué)校計(jì)劃在高一上學(xué)期開設(shè)選修中的物理地理兩個(gè)科目,為了了解學(xué)生對這兩個(gè)科目的選課情況,對抽取到的名學(xué)生進(jìn)行問卷調(diào)查(假定每名學(xué)生在物理地理這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目),下表是根據(jù)調(diào)查結(jié)果得到的一個(gè)不完整的列聯(lián)表,請將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由;

          選擇物理

          選擇地理

          總計(jì)

          男生

          女生

          總計(jì)

          3)在抽取到的名女生中,按(2)中的選課情況進(jìn)行分層抽樣,從中抽出名女生,再從這名女生中抽取人,設(shè)這人中選擇物理的人數(shù)為,求的分布列及期望.附:,

          0.05

          0.01

          0.005

          0.001

          3.841

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知0x20y2,且M+M的最小值為( 。

          A.B.C.2D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】自湖北武漢爆發(fā)新型冠狀病毒肺炎疫情以來,各地醫(yī)療物資缺乏,各生產(chǎn)企業(yè)紛紛加班加點(diǎn)生產(chǎn),某企業(yè)準(zhǔn)備購買三臺(tái)口罩生產(chǎn)設(shè)備,型號(hào)分別為A,B,C,已知這三臺(tái)設(shè)備均使用同一種易耗品,提供設(shè)備的商家規(guī)定:可以在購買設(shè)備的同時(shí)購買該易耗品,每件易耗品的價(jià)格為100元;也可以在設(shè)備使用過程中,隨時(shí)單獨(dú)購買易耗品,每件易耗品的價(jià)格為200元.為了決策在購買設(shè)備時(shí)應(yīng)同時(shí)購買的易耗品的件數(shù),該單位調(diào)查了這三種型號(hào)的設(shè)備各60臺(tái),調(diào)查每臺(tái)設(shè)備在一個(gè)月中使用的易耗品的件數(shù),并得到統(tǒng)計(jì)表如下所示.

          每臺(tái)設(shè)備一個(gè)月中使用的易耗品的件數(shù)

          6

          7

          8

          頻數(shù)

          型號(hào)A

          30

          30

          0

          型號(hào)B

          20

          30

          10

          型號(hào)C

          0

          45

          15

          將調(diào)查的每種型號(hào)的設(shè)備的頻率視為概率,各臺(tái)設(shè)備在易耗品的使用上相互獨(dú)立.

          1)求該單位一個(gè)月中A,BC三臺(tái)設(shè)備使用的易耗品總數(shù)超過21件(不包括21件)的概率;

          2)以該單位一個(gè)月購買易耗品所需總費(fèi)用的期望值為決策依據(jù),該單位在購買設(shè)備時(shí)應(yīng)同時(shí)購買20件還是21件易耗品?

          查看答案和解析>>

          同步練習(xí)冊答案