日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•深圳二模)如圖,已知正方形ABCD在水平面上的正投影(投影線垂直于投影面)是四邊形A′B′C′D′,其中A與A'重合,且BB′<DD′<CC′.
          (1)證明AD′∥平面BB′C′C,并指出四邊形AB′C′D′的形狀;
          (2)如果四邊形中AB′C′D′中,AD′=
          2
          ,AB′=
          5
          ,正方形的邊長為
          6
          ,求平面ABCD與平面AB′C′D′所成的銳二面角θ的余弦值.
          分析:(1)先證明BB°∥CC′∥DD′,在CC′上取點(diǎn)E,使得CE=DD′,連接BE,D′E,證明ABED′是平行四邊形,可得AD′∥BE,從而可證AD′平面BB′C′C,四邊形AB′C′D′是平行四邊形;
          (2)先證明AC′⊥B′C′,根據(jù)正方形ABCD在水平面上的正投影(投影線垂直于投影面)是四邊形A′B′C′D′,可得平面ABCD與平面AB′C′D′所成的銳二面角θ的余弦值=
          SAB′C′D′
          SABCD
          ,計(jì)算面積即可求得結(jié)論.
          解答:(1)證明:依題意,BB′⊥平面AB′C′D′,CC′⊥平面AB′C′D′,DD′⊥平面AB′C′D′,
          所以BB°∥CC′∥DD′.             …(2分)
          在CC′上取點(diǎn)E,使得CE=DD′,
          連接BE,D′E,如圖1.

          因?yàn)镃E∥DD′,且CE=DD′,所以CDD′E是平行四邊形,∴D′E∥DC,且D′E=DC.
          又ABCD是正方形,∴DC∥AB,且DC=AB,
          所以D′E∥AB,且D′E=AB,故ABED′是平行四邊形,…(4分)
          從而AD′∥BE,又BE?平面BB′C′C,AD′?平面BB′C′C,
          所以AD′∥平面BB′C′C.           …(6分)
          四邊形AB′C′D′是平行四邊形.…(7分)
          (2)依題意,在Rt△ABB′中,BB′=1,在Rt△ADD′中,DD′=2,
          所以CC′=BB′+DD′-AA′=1+2-0=3.   …(8分)
          連接AC,AC′,如圖2,
          在Rt△ACC′中,AC′=
          3

          所以AC′2+B′C′2=AB′2,故AC′⊥B′C′.…(10分)
          由題意,正方形ABCD在水平面上的正投影(投影線垂直于投影面)是四邊形A′B′C′D′,
          所以平面ABCD與平面AB′C′D′所成的銳二面角θ的余弦值=
          SAB′C′D′
          SABCD
          .  …(12分)
          而SABCD=6,SAB′C′D′=B′C′×AC′=
          2
          ×
          3=
          6
          ,所以cosθ=
          6
          6

          所以平面ABCD與平面AB′C′D′所成的銳二面角θ的余弦值為
          6
          6
          . …(14分)
          點(diǎn)評:本題考查線面平行,考查面面角,考查學(xué)生分析解決問題的能力,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳二模)已知平面向量
          a
          ,
          b
          滿足條件
          a
          +
          b
          =(0,1),
          a
          -
          b
          =(-1,2),則
          a
          b
          =
          -1
          -1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳二模)設(shè)a,b,c,d∈R,若a,1,b成等比數(shù)列,且c,1,d 成等差數(shù)列,則下列不等式恒成立的是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳二模)已知二次函數(shù)f(x)的最小值為-4,且關(guān)于x的不等式f(x)≤0的解集為{x|-1≤x≤3,x∈R}.
          (1)求函數(shù)f(x)的解析式;
          (2)求函數(shù)g(x)=
          f(x)x
          -4lnx
          的零點(diǎn)個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳二模)曲線y=(
          1
          2
          )
          x
          在x=0點(diǎn)處的切線方程是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳二模)執(zhí)行圖中程序框圖表示的算法,若輸入m=5533,n=2012,則輸出d=
          503
          503
          (注:框圖中的賦值符號“=”也可以寫成“←”或“:=”)

          查看答案和解析>>

          同步練習(xí)冊答案