日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足f(-1)=0,且對任意實數(shù)x,均有x-1≤f(x)≤x2-3x+3恒成立.
          (1)求f(x)的表達(dá)式;
          (2)若關(guān)于x的不等式f(x)≤nx-1的解集非空,求實數(shù)n的取值的集合A.
          (3)若關(guān)于x的方程f(x)=nx-1的兩根為x1,x2,試問:是否存在實數(shù)m,使得不等式m2+tm+1≤|x1-x2|對任意n∈A及t∈[-3,3]恒成立?若存在,求出m的取值范圍;若不存在,說明理由.

          解:(1)由x-1=x2-3x+3可得x=2,
          故由題可知1≤f(2)≤1,
          從而f(2)=1.
          因此,
          故b=-a,c=-2a.由x-1≤f(x)
          得ax2-(+a)x+-2a≥0對x∈R恒成立,
          故△=(+a)2-4a(-2a)≤0,
          即9a2-4a+≤0,
          解得a=,
          故f(x)=x2+-
          (2)由x2+-≤nx-1
          得2x2+(1-9n)x+8≤0,
          故△=(1-9n)2-64≥0,
          解得n≤-或n≥1,從而A=(-∞,-]∪[1,+∞)
          (3)顯然|x1-x2|≥0,當(dāng)且僅當(dāng)n=-或n=1時取得等號,
          故m2+tm+1≤0對t∈[-3,3]恒成立.記g(t)=m•t+(m2+1),
          則有,

          故m∈∅,不存在這樣的實數(shù)m
          分析:(1)使用待定系數(shù)法求函數(shù)的解析式,關(guān)鍵是根據(jù)已知條件構(gòu)造方程組.
          (2)當(dāng)f(x)的二次系數(shù)a>0時,f(x)≤0的解集非空?△≥0
          (3)可將其轉(zhuǎn)化為求的關(guān)于m的不等式組.
          點評:解一元二次不等式ax2+bx+c>0 或ax2+bx+c<0,反映在數(shù)量關(guān)系上就是考查二次方程ax2+bx+c=0的根,反映在圖形上就是考查二次函數(shù)y=ax2+bx+c的圖象與x軸的關(guān)系.因此要熟練掌握“三個二次”之間的相互轉(zhuǎn)換,善于用轉(zhuǎn)化思想分析解決問題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)二次函數(shù)f(x)=ax2+bx+c滿足f(-1)=0,對于任意的實數(shù)x都有f(x)-x≥0,并且當(dāng)x∈(0,2)時,f(x)≤(
          x+12
          )
          2

          (1)求f(1)的值;
          (2)求證:a>0,c>0;
          (3)當(dāng)x∈(-1,1)時,函數(shù)g(x)=f(x)-mx,m∈R是單調(diào)的,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)二次函數(shù)f(x)=ax2+bx+c(a>0),方程f(x)-x=0的兩個根x1、x2滿足0<x1<x2
          1
          a
          ,且函數(shù)f(x)的圖象關(guān)于直線x=x0對稱,則有( 。
          A、x0
          x1
          2
          B、x0
          x1
          2
          C、x0
          x1
          2
          D、x0
          x1
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)二次函數(shù)f(x)=ax2+(2b+1)x-a-2(a,b∈R,a≠0)在[3,4]上至少有一個零點,求a2+b2的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足:當(dāng)x=1時,f(x)取得最小值1,且f(0)=
          32

          (1)求a、b、c的值;
          (2)是否存在實數(shù)m,n,使x∈[m,n]時,函數(shù)的值域也是[m,n]?若存在,則求出這樣的實數(shù)m,n;若不存在,則說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)二次函數(shù)f(x)=x2+x+a(a>0),若f(m)<0,則有(  )

          查看答案和解析>>

          同步練習(xí)冊答案