日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=alnx-ax-3(a∈R).
          (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
          (Ⅱ)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3+x2[f′(x)+
          m
          2
          ]
          在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
          (Ⅲ)求證:
          ln2
          2
          ×
          ln3
          3
          ×
          ln4
          4
          ×…×
          lnn
          n
          1
          n
          (n≥2,n∈N*)
          分析:利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間的步驟是①求導(dǎo)函數(shù)f′(x);②解f′(x)>0(或<0);③得到函數(shù)的增區(qū)間(或減區(qū)間),
          對(duì)于本題的(1)在求單調(diào)區(qū)間時(shí)要注意函數(shù)的定義域以及對(duì)參數(shù)a的討論情況;
          (2)點(diǎn)(2,f(2))處的切線的傾斜角為45°,即切線斜率為1,即f'(2)=1,可求a值,代入得g(x)的解析式,由t∈[1,2],且g(x)在區(qū)間(t,3)上總不是單調(diào)函數(shù)可知:
          g′(1)<0
          g′(2)<0
          g′(3)>0
          ,于是可求m的范圍.
          (3)是近年來(lái)高考考查的熱點(diǎn)問(wèn)題,即與函數(shù)結(jié)合證明不等式問(wèn)題,常用的解題思路是利用前面的結(jié)論構(gòu)造函數(shù),利用函數(shù)的單調(diào)性,對(duì)于函數(shù)取單調(diào)區(qū)間上的正整數(shù)自變量n有某些結(jié)論成立,進(jìn)而解答出這類(lèi)不等式問(wèn)題的解.
          解答:解:(Ⅰ)f′(x)=
          a(1-x)
          x
          (x>0)
          (2分)
          當(dāng)a>0時(shí),f(x)的單調(diào)增區(qū)間為(0,1],減區(qū)間為[1,+∞);
          當(dāng)a<0時(shí),f(x)的單調(diào)增區(qū)間為[1,+∞),減區(qū)間為(0,1];
          當(dāng)a=0時(shí),f(x)不是單調(diào)函數(shù)(4分)
          (Ⅱ)f′(2)=-
          a
          2
          =1
          得a=-2,f(x)=-2lnx+2x-3
          g(x)=x3+(
          m
          2
          +2)x2-2x
          ,
          ∴g'(x)=3x2+(m+4)x-2(6分)
          ∵g(x)在區(qū)間(t,3)上總不是單調(diào)函數(shù),且g′(0)=-2
          g′(t)<0
          g′(3)>0
          (8分)

          由題意知:對(duì)于任意的t∈[1,2],g′(t)<0恒成立,
          所以有:
          g′(1)<0
          g′(2)<0
          g′(3)>0
          ,∴-
          37
          3
          <m<-9
          (10分)
          (Ⅲ)令a=-1此時(shí)f(x)=-lnx+x-3,所以f(1)=-2,
          由(Ⅰ)知f(x)=-lnx+x-3在(1,+∞)上單調(diào)遞增,
          ∴當(dāng)x∈(1,+∞)時(shí)f(x)>f(1),即-lnx+x-1>0,
          ∴l(xiāng)nx<x-1對(duì)一切x∈(1,+∞)成立,(12分)
          ∵n≥2,n∈N*,則有0<lnn<n-1,
          0<
          lnn
          n
          n-1
          n

          ln2
          2
          ln3
          3
          ln4
          4
          ••
          lnn
          n
          1
          2
          2
          3
          3
          4
          ••
          n-1
          n
          =
          1
          n
          (n≥2,n∈N*)
          點(diǎn)評(píng):本題考查利用函數(shù)的導(dǎo)數(shù)來(lái)求函數(shù)的單調(diào)區(qū)間,已知函數(shù)曲線上一點(diǎn)求曲線的切線方程即對(duì)函數(shù)導(dǎo)數(shù)的幾何意義的考查,考查求導(dǎo)公式的掌握情況.含參數(shù)的數(shù)學(xué)問(wèn)題的處理,構(gòu)造函數(shù)求解證明不等式問(wèn)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          a-x2
          x
          +lnx  (a∈R , x∈[
          1
          2
           , 2])

          (1)當(dāng)a∈[-2,
          1
          4
          )
          時(shí),求f(x)的最大值;
          (2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
          34
          的解集為
          (-∞,-2)
          (-∞,-2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
          2x
          )>3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
          (1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
          (2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
          f(x)   ,  x>0
          -f(x) ,    x<0
           給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案