日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知點A(2,0),B(1,0),點D,E同時從點B出發(fā)沿單位圓O逆時針運動,且點E的角速度是點D的角速度的2倍.設(shè)∠BOD=θ,0≤θ<2π
          (Ⅰ)當(dāng),求四邊形ODAE的面積;
          (Ⅱ)將D、E兩點間的距離用f(θ)表示,并求f(θ)的單調(diào)區(qū)間.

          【答案】分析:(Ⅰ)由SODAE=S△OAE-S△OAD,關(guān)鍵分別求出相應(yīng)三角形的面積;(Ⅱ)由條件點D,E都從點B同時出發(fā)沿單位圓O逆時針運動,且點E的角速度是點D的角速度的2倍,用坐標(biāo)表示點,從而表達(dá)出f(θ)表示,再求f(θ)的單調(diào)區(qū)間.
          解答:解:(Ⅰ)當(dāng)時,
          ;
          (Ⅱ)∵點D,E都從點B同時出發(fā)沿單位圓O逆時針運動,且點E的角速度是點D的角速度的2倍.
          ∴∠BOE=2∠BOD,∠BOD=θ,∠BOE=2θ,0≤θ<2π
          由三角函數(shù)的定義可知,點D(cosθ,sinθ),E(cos2θ,sin2θ)
          ===
          ∵0≤θ<2π,∴,∴
          得:0≤θ≤π,由得:π<θ<2π
          ∴f(θ)的單調(diào)遞增區(qū)間是[0,π],單調(diào)遞減區(qū)間是(π,2π).
          點評:本題主要考查再實際問題中建立三角函數(shù)模型,考查三角函數(shù)的定義及化簡,有一定的綜合性.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知點A(-2,0),點P是⊙B:(x-2)2+y2=36上任意一點,線段AP的垂直平分線交BP于點Q,點Q的軌跡記為曲線C.
          (Ⅰ)求曲線C的方程;
          (Ⅱ)已知⊙O:x2+y2=r2(r>0)的切線l總與曲線C有兩個交點M、N,并且其中一條切線滿足∠MON>90°,求證:對于任意一條切線l總有∠MON>90°.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知點A(2,0),B(1,0),點D,E同時從點B出發(fā)沿單位圓O逆時針運動,且點E的角速度是點D的角速度的2倍.設(shè)∠BOD=θ,0≤θ<2π
          (Ⅰ)當(dāng)∠BOD=
          π6
          ,求四邊形ODAE的面積;
          (Ⅱ)將D、E兩點間的距離用f(θ)表示,并求f(θ)的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知點A(-2,0),點P是⊙B:(x-2)2+y2=36上任意一點,線段AP的垂直平分線交BP于點Q,點Q的軌跡記為曲線C.
          (Ⅰ)求曲線C的方程;
          (Ⅱ)已知⊙O:x2+y2=r2(r>0)的切線l總與曲線C有兩個交點M、N,并且其中一條切線滿足∠MON>90°,求證:對于任意一條切線l總有∠MON>90°.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:浙江省期中題 題型:解答題

          如圖,已知點A(2,3), B(4,1),△ABC是以AB為底邊的等腰三角形,點C在直線l:x-2y+2=0上,
          (Ⅰ)求AB邊上的高CE所在直線的方程;
          (Ⅱ)求△ABC的面積。

          查看答案和解析>>

          同步練習(xí)冊答案