日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知,函數(shù).

          (Ⅰ)當(dāng)時(shí),解不等式;

          (Ⅱ)若關(guān)于的方程的解集中恰有一個(gè)元素,求的取值范圍;

          (Ⅲ)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的和不大于,求的取值范圍.

          【答案】(1) 解集為;(2) ;(3) 的取值范圍是.

          【解析】試題分析:

          1)根據(jù)題意將不等式化為指數(shù)不等式求解.(2由題意可得方程只有一個(gè)解,即只有一解,令,則上只有一解,分離參數(shù)后并結(jié)合圖象求解即可.(3)先征得函數(shù)在定義域內(nèi)單調(diào)遞減,從而可得在區(qū)間上的最大值、最小值,由題意得恒成立,整理得恒成立.令,可得恒成立,求得函數(shù)上的最大值后解不等式可得的范圍.

          試題解析:

          (1)當(dāng)時(shí), ,

          ,

          整理得,解得

          ∴原不等式的解集為.

          (2)方程,

          即為

          ,

          ,

          ,則

          由題意得方程上只有一解,

          , ,

          結(jié)合圖象可得,當(dāng)時(shí),直線的圖象只有一個(gè)公共點(diǎn),即方程只有一個(gè)解.

          ∴實(shí)數(shù)的范圍為.

          (3)∵函數(shù)上單調(diào)遞減,

          ∴函數(shù)在定義域內(nèi)單調(diào)遞減,

          ∴函數(shù)在區(qū)間上的最大值為,最小值為,

          由題意得,

          恒成立,

          ,

          恒成立,

          上單調(diào)遞增,

          ,

          解得,

          ,

          ∴實(shí)數(shù)的取值范圍是.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,如圖描述了甲、乙、丙三輛汽車在不同速度下燃油效率情況,下列敘述中正確的是(
          A.消耗1升汽油,乙車最多可行駛5千米
          B.以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
          C.甲車以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油
          D.某城市機(jī)動(dòng)車最高限速80千米/小時(shí),相同條件下,在該市用丙車比用乙車更省油

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓的方程為: 。

          (1)求圓的圓心所在直線方程一般式;

          (2)若直線被圓截得弦長(zhǎng)為,試求實(shí)數(shù)的值;

          (3)已知定點(diǎn)且點(diǎn)是圓上兩動(dòng)點(diǎn),當(dāng)可取得最大值為時(shí),求滿足條件的實(shí)數(shù)的值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】給出下列命題:

          ①如果不同直線都平行于平面,則一定不相交;

          ②如果不同直線都垂直于平面,則一定平行;

          ③如果平面互相平行,若直線,直線,則

          ④如果平面互相垂直,且直線也互相垂直,若,則;

          其中正確的個(gè)數(shù)為( )

          A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐中, , , ,平面底面 ,

          分別是的中點(diǎn),求證:

          (1)平面

          (2);

          (3)平面平面.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)的定義域?yàn)?/span>,如果存在實(shí)數(shù), 使得對(duì)任意滿足恒成立,則稱為廣義奇函數(shù).

          (Ⅰ)設(shè)函數(shù),試判斷是否為廣義奇函數(shù),并說(shuō)明理由;

          (Ⅱ)設(shè)函數(shù)其中常數(shù) ,證明是廣義奇函數(shù),并寫出的值;

          是定義在上的廣義奇函數(shù),且函數(shù)的圖象關(guān)于直線為常數(shù))對(duì)稱試判斷是否為周期函數(shù)?若是,求出的一個(gè)周期,若不是,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】阿波羅尼斯是古希臘著名數(shù)學(xué)家,與歐幾里得、阿基米德被稱為亞歷山大時(shí)期數(shù)學(xué)三巨匠,他對(duì)圓錐曲線有深刻而系統(tǒng)的研究,主要研究成果集中在他的代表作《圓錐曲線》一書,阿波羅尼斯圓是他的研究成果之一,指的是:已知?jiǎng)狱c(diǎn)M與兩定點(diǎn)A、B的距離之比為λ(λ>0,λ≠1),那么點(diǎn)M的軌跡就是阿波羅尼斯圓.下面,我們來(lái)研究與此相關(guān)的一個(gè)問(wèn)題.已知圓:x2+y2=1和點(diǎn) ,點(diǎn)B(1,1),M為圓O上動(dòng)點(diǎn),則2|MA|+|MB|的最小值為( )
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】過(guò)點(diǎn)(0,2)的直線l與中心在原點(diǎn),焦點(diǎn)在x軸上且離心率為 的橢圓C相交于A、B兩點(diǎn),直線 過(guò)線段AB的中點(diǎn),同時(shí)橢圓C上存在一點(diǎn)與右焦點(diǎn)關(guān)于直線l對(duì)稱.
          (1)求直線l的方程;
          (2)求橢圓C的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,三棱柱A1B1C1﹣ABC的側(cè)棱AA1⊥底面ABC,AB⊥AC,AB=AA1 , D是棱CC1的中點(diǎn).

          (Ⅰ)證明:平面AB1C⊥平面A1BD;
          (Ⅱ)在棱A1B1上是否存在一點(diǎn)E,使C1E∥平面A1BD?并證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案