日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設數(shù)列的前項和為,且.
          (1)求數(shù)列的通項公式;
          (2)設求證:.

          (1);(2)詳見解析.

          解析試題分析:(1)在的關系式中,先利用這一特點,令代入式子中求出的值,然后令,由求出的表達式,然后就的值是否符合的通項進行檢驗,從而最終確定數(shù)列的通項公式;(2)先求出數(shù)列的通項公式,根據(jù)通項公式的特點利用等差數(shù)列求和公式求出,然后根據(jù)數(shù)列的通項公式的特點選擇裂項法求和,從而證明相應不等式.
          試題解析:(1)當時,
          時,,此式對也成立.

          (2)證明:設,則
          所以是首項為,公差為的等差數(shù)列.
          ,

          .
          考點:1.定義法求數(shù)列通項;2.等差數(shù)列求和;3.裂項法求和

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:解答題

          數(shù)列、的每一項都是正數(shù),,,且、成等差數(shù)列,、成等比數(shù)列,.
          (Ⅰ)求、的值;
          (Ⅱ)求數(shù)列、的通項公式;
          (Ⅲ)證明:對一切正整數(shù),有.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          是公差大于零的等差數(shù)列,已知.
          (Ⅰ)求的通項公式;
          (Ⅱ)設是以函數(shù)的最小正周期為首項,以為公比的等比數(shù)列,求數(shù)列的前項和.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知為等比數(shù)列,是等差數(shù)列,
          (Ⅰ)求數(shù)列的通項公式及前項和
          (2)設,,其中,試比較的大小,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知等差數(shù)列滿足:,該數(shù)列的前三項分別加上l,l,3后順次成為等比數(shù)列的前三項.
          (I)求數(shù)列的通項公式;
          (II)設,若恒成立,求c的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知等差數(shù)列中,.
          (I)求數(shù)列的通項公式;
          (II)若數(shù)列的前項和,求的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知等差數(shù)列前三項的和為,前三項的積為.
          (1)求等差數(shù)列的通項公式;
          (2)若,,成等比數(shù)列,求數(shù)列的前項和.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          是公比大于1的等比數(shù)列,為數(shù)列的前項和.已知,且構(gòu)成等差數(shù)列.
          (Ⅰ)求數(shù)列的通項公式;
          (Ⅱ)令,求數(shù)列的前項和

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,若,且.
          (1)求數(shù)列,的通項公式;
          (2)是否存在,使得,若存在,求出所有滿足條件的;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案