如下圖,在三棱錐中,
底面
,點(diǎn)
為以
為直徑的圓上任意一動(dòng)點(diǎn),且
,點(diǎn)
是
的中點(diǎn),
且交
于點(diǎn)
.
(1)求證:面
;
(2)當(dāng)時(shí),求二面角
的余弦值.
(1)詳見解析;(2).
解析試題分析:(1)由已知條件平面
得到
,再由已知條件得到
,從而得到
平面
,進(jìn)而得到
,利用等腰三角形三線合一得到
,結(jié)合直線與平面垂直的判定定理得到
平面
,于是得到
,結(jié)合題中已知條件
以及直線與平面垂直的判定定理得到
平面
;(2)以
為坐標(biāo)原點(diǎn),
為
軸,
為
軸,建立空間直角坐標(biāo)系
,利用空間向量法求二面角
的余弦值.
(1)證明:底面
,
,又易知
,
平面
,
,
又,
是
的中點(diǎn),
,
平面
,
,
又已知,
平面
;
(2)如下圖以為坐標(biāo)原點(diǎn),
為
軸,
為
軸,建立空間直角坐標(biāo)系
,由于
,
可設(shè),則
,
,
,
,
,
,
,
設(shè)平面的一個(gè)法向量
,
則,即
,
可得,
由(1)可知為面
的法向量,
易求,
二面角
的余弦值是
.
考點(diǎn):1.直線與平面垂直;2.空間向量法求二面角
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在斜三棱柱ABC-A1B1C1中,側(cè)面ACC1A1⊥面ABC,AA1=a,A1C=CA=AB=a,AB⊥AC,D為AA1中點(diǎn).
(1)求證:CD⊥面ABB1A1;
(2)在側(cè)棱BB1上確定一點(diǎn)E,使得二面角E-A1C1-A的大小為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(1)證明:PA⊥BD;
(2)若PD=AD,求二面角A-PB-C的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示的幾何體中,面為正方形,面
為等腰梯形,
,
,
,且平面
平面
.
(1)求與平面
所成角的正弦值;
(2)線段上是否存在點(diǎn)
,使平面
平面
?
證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐P—ABCD中,PD底面ABCD,AB//DC,AD
DC,AB=AD=1,DC=2,PD=
,M為棱PB的中點(diǎn).
(1)證明:DM平面PBC;
(2)求二面角A—DM—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐的底面是正方形,側(cè)棱
底面
,過
作
垂直
交
于
點(diǎn),作
垂直
交
于
點(diǎn),平面
交
于
點(diǎn),且
,
.
(1)設(shè)點(diǎn)是
上任一點(diǎn),試求
的最小值;
(2)求證:、
在以
為直徑的圓上;
(3)求平面與平面
所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知的直徑
,點(diǎn)
、
為
上兩點(diǎn),且
,
,
為弧
的中點(diǎn).將
沿直徑
折起,使兩個(gè)半圓所在平面互相垂直(如圖2).
(1)求證:;
(2)在弧上是否存在點(diǎn)
,使得
平面
?若存在,試指出點(diǎn)
的位置;若不存在,請(qǐng)說明理由;
(3)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
三棱柱ABC-A1B1C1在如圖所示的空間直角坐標(biāo)系中,已知AB=2,AC=4,A1A=3.D是BC的中點(diǎn).
(1)求直線DB1與平面A1C1D所成角的正弦值;
(2)求二面角B1-A1D-C1的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com