日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2009•荊州模擬)已知函數(shù)f(x)=x3+ax2+bx+c的圖象經(jīng)過原點(diǎn),且在x=1處取得極值,直線y=2x+3到曲線y=f(x)在原點(diǎn)處的切線所成的角為45°.
          (1)求f(x)的解析式;
          (2)若對(duì)于任意實(shí)數(shù)α和β恒有不等式|f(2sinα)-f(2sinβ)|≤m成立,求m的最小值.
          分析:(1)由函數(shù)f(x)=x3+ax2+bx+c的圖象經(jīng)過原點(diǎn),有f(0)=c=0,利用在x=1處取得極值可知f′(1)=3+2a+b=0
          又曲線y=f(x)在原點(diǎn)處的切線的斜率k=f′(0)=b,而直線y=2x+3到此切線所成的角為45°,根據(jù)到角公式可求得解得b=-3,從而可求函數(shù)的解析式;
          (2)由f′(x)=3x2-3=3(x-1)(x+1)可知,f(x)在(-∞,-1]和[1,+∞)上遞增,在[-1,1]上遞減,從而可得f(x)在[-2,2]上的最大值和最小值分別為-2和2,根據(jù)2sinα∈[-2,2],2sinβ∈[-2,2],可得m的最小值.
          解答:(1)解:由題意有f(0)=c=0,f'(x)=3x2+2ax+b且f′(1)=3+2a+b=0
          又曲線y=f(x)在原點(diǎn)處的切線的斜率k=f′(0)=b,而直線y=2x+3到此切線所成的角為45°,
          1=tan450=
          b-2
          1+2b
          ,解得b=-3,代入f′(1)=3+2a+b=0得a=0,
          ∴f(x)=x3-3x….(6分)
          (2)解:由f′(x)=3x2-3=3(x-1)(x+1)可知,f(x)在(-∞,-1]和[1,+∞)上遞增,在[-1,1]上遞減.
          又f(-2)=-2,f(-1)=2,f(1)=-2,f(2)=2,
          ∴f(x)在[-2,2]上的最大值和最小值分別為-2和2,….(12分)
          又∵sinα∈[-2,2],2sinβ∈[-2,2]
          ∴|f(2sinα)-f(2sinβ)|≤4
          故m的最小值為4.….(15分)
          點(diǎn)評(píng):本題以函數(shù)為載體,考查導(dǎo)數(shù)的幾何意義,考查利用導(dǎo)數(shù)求函數(shù)的極值、最值.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•荊州模擬)已知a∈R,若關(guān)于x的方程x2+x+|a-
          1
          4
          |+|a|=0
          有實(shí)根,則a的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•荊州模擬)函數(shù)f(x)=log2(x2+1)(x<0)的反函數(shù)是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•荊州模擬)某種測試可以隨時(shí)在網(wǎng)絡(luò)上報(bào)名參加,某人通過這種測試的概率是
          2
          3
          ,若他連續(xù)兩次參加,則其中恰有一次通過的概率為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•荊州模擬)已知cos(θ+
          π
          6
          )=
          5
          13
          ,0<θ<
          π
          3
          ,則cosθ=( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案