日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 函數(shù)y=f(x)為定義在R上的減函數(shù),函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱(chēng),x,y滿(mǎn)足不等式f(x2-2x)+f(2y-y2)≤0,M(1,2),N(x,y),O為坐標(biāo)原點(diǎn),則當(dāng)1≤x≤4時(shí),
          OM
          ON
          的取值范圍為( 。
          分析:判斷函數(shù)的奇偶性,推出不等式,利用約束條件畫(huà)出可行域,然后求解數(shù)量積的范圍即可.
          解答: 解:函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱(chēng),
          所以f(x)為 奇函數(shù).
          ∴f(x2-2x)≤f(-2y+y2)≤0,
          ∴x2-2x≥-2y+y2,
          x2-2x≥y2-2y
          1≤x≤4

          (x-y)(x+y-2)≥0
          1≤x≤4
          ,畫(huà)出可行域如圖,
          可得
          OM
          ON
          =x+2y∈[0,12].
          故選D.
          點(diǎn)評(píng):本題考查函數(shù)的奇偶性,線(xiàn)性規(guī)劃的應(yīng)用,向量的數(shù)量積的知識(shí),是綜合題,考查數(shù)形結(jié)合與計(jì)算能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          某旅游點(diǎn)有50輛自行車(chē)供游客租賃使用,管理這些自行車(chē)的費(fèi)用是每日115元.根據(jù)經(jīng)驗(yàn),若每輛自行車(chē)的日租金不超過(guò)6元,則自行車(chē)可以全部租出;若超過(guò)6元,則每提高1元,租不出去的自行車(chē)就增加3輛.
          規(guī)定:每輛自行車(chē)的日租金不超過(guò)20元,每輛自行車(chē)的日租金x元只取整數(shù),并要求出租所有自行車(chē)一日的總收入必須超過(guò)一日的管理費(fèi)用,用y表示出租所有自行車(chē)的日凈收入(即一日中出租所有自行車(chē)的總收入減去管理費(fèi)后的所得).
          (1)求函數(shù)y=f(x)的解析式及定義域;
          (2)試問(wèn)日凈收入最多時(shí)每輛自行車(chē)的日租金應(yīng)定為多少元?日凈收入最多為多少元?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          關(guān)于函數(shù)y=f(x),有下列命題:
          ①若a∈[-2,2],則函數(shù)f(x)=
          x2+ax+1
          的定域?yàn)镽;
          ②若f(x)=log
          1
          2
          (x2-3x+2)
          ,則f(x)的單調(diào)增區(qū)間為(-∞,
          3
          2
          )

          ③(理)若f(x)=
          1
          x2-x-2
          ,則
          lim
          x→2
          [(x-2)f(x)]=0
          ;
          (文)若f(x)=
          1
          x2-x-2
          ,則值域是(-∞,0)∪(0,+∞)
          ④定義在R的函數(shù)f(x),且對(duì)任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),則4是y=f(x)的一個(gè)周期.
          其中真命題的編號(hào)是
           
          .(文理相同)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          某服裝批發(fā)商場(chǎng)經(jīng)營(yíng)的某種服裝,進(jìn)貨成本40元/件,對(duì)外批發(fā)價(jià)定為60元/件.該商場(chǎng)為了鼓勵(lì)購(gòu)買(mǎi)者大批量購(gòu)買(mǎi),推出優(yōu)惠政策:一次購(gòu)買(mǎi)不超過(guò)50件時(shí),只享受批發(fā)價(jià);一次購(gòu)買(mǎi)超過(guò)50件時(shí),每多購(gòu)買(mǎi)1件,購(gòu)買(mǎi)者所購(gòu)買(mǎi)的所有服裝可在享受批發(fā)價(jià)的基礎(chǔ)上,再降低0.1元/件,但最低價(jià)不低于50元/件.
          (1)問(wèn)一次購(gòu)買(mǎi)多少件時(shí),售價(jià)恰好是50元/件?
          (2)設(shè)購(gòu)買(mǎi)者一次購(gòu)買(mǎi)x件,商場(chǎng)的利潤(rùn)為y元(利潤(rùn)=銷(xiāo)售總額-成本),試寫(xiě)出函數(shù)y=f(x)的表達(dá)式.并說(shuō)明在售價(jià)高于50元/件時(shí),購(gòu)買(mǎi)者一次購(gòu)買(mǎi)多少件,商場(chǎng)利潤(rùn)最大.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知:射線(xiàn)OA為y=kx(k>0,x>0),射線(xiàn)OB為y=-kx(x>0),動(dòng)點(diǎn)P(x,y)在∠AOx的內(nèi)部,PM⊥OA于M,PN⊥OB于N,四邊形ONPM的面積恰為k.
          (1)設(shè)M(a,ka),N(b,-kb),(a>0,b>0),求P(x,y)(x>0,0<y<kx)分別到直線(xiàn)OM,ON的距離.
          (2)當(dāng)k為定值時(shí),動(dòng)點(diǎn)P的縱坐標(biāo)y是橫坐標(biāo)x的函數(shù),求這個(gè)函數(shù)y=f(x)的解析式;
          (3)根據(jù)k的取值范圍,確定y=f(x)的定義域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          某企業(yè)科研課題組計(jì)劃投資研發(fā)一種新產(chǎn)品,根據(jù)分析和預(yù)測(cè),能獲得10萬(wàn)元~1000萬(wàn)元的投資收益.企業(yè)擬制定方案對(duì)課題組進(jìn)行獎(jiǎng)勵(lì),獎(jiǎng)勵(lì)方案為:獎(jiǎng)金y(單位:萬(wàn)元)隨投資收益x(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不超過(guò)9萬(wàn)元,同時(shí)獎(jiǎng)金也不超過(guò)投資收益的20%,并用函數(shù)y=f(x)模擬這一獎(jiǎng)勵(lì)方案.
          (Ⅰ)試寫(xiě)出模擬函數(shù)y=f(x)所滿(mǎn)足的條件;
          (Ⅱ)試分析函數(shù)模型y=4lgx-3是否符合獎(jiǎng)勵(lì)方案的要求?并說(shuō)明你的理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案