日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1、F2在坐標(biāo)軸上,離心率為
          2
          且過(guò)點(diǎn)(4,-
          10

          (Ⅰ)求雙曲線方程;
          (Ⅱ)若點(diǎn)M(3,m)在雙曲線上,求證:點(diǎn)M在以F1F2為直徑的圓上;
          (Ⅲ)由(Ⅱ)的條件,求△F1MF2的面積.
          分析:(1)雙曲線方程為x2-y2=λ,點(diǎn)代入求出參數(shù)λ的值,從而求出雙曲線方程,
          (2)先求出
          MF1
          MF2
          的解析式,把點(diǎn)M(3,m)代入雙曲線,可得出
          MF1
          MF2
          =0,即可證明.
          (3)求出三角形的高,即m的值,可得其面積.
          解答:解:(Ⅰ)∵離心率e=
          2

          ∴設(shè)所求雙曲線方程為x2-y2=λ(λ≠0)
          則由點(diǎn)(4,-
          10
          )在雙曲線上
          知λ=42-(-
          10
          2=6
          ∴雙曲線方程為x2-y2=6
          (Ⅱ)若點(diǎn)M(3,m)在雙曲線上
          則32-m2=6∴m2=3
          由雙曲線x2-y2=6知F1(2
          3
          ,0),F(xiàn)2(-2
          3
          ,0)
          MF1
          MF2
          =(2
          3?
          -3,-m)•(-2
          3?
          -3,-m)=m2-(2
          3?
          )
          2
          +9=0

          MF1
          MF2
          ,故點(diǎn)M在以F1F2為直徑的圓上.
          (Ⅲ)S△F1MF2=
          1
          2
          ×2C×|M|=C|M|=2
          3
          ×
          3
          =6
          點(diǎn)評(píng):本題考查雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用.解答的關(guān)鍵是對(duì)雙曲線標(biāo)準(zhǔn)方程的理解和向量運(yùn)算的應(yīng)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,離心率為
          2
          ,且過(guò)點(diǎn)(4,-
          10
          )
          ,則雙曲線的標(biāo)準(zhǔn)方程是
          x2-y2=6
          x2-y2=6

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知雙曲線的中心在原點(diǎn),焦點(diǎn)為F1(5,0),F(xiàn)2(-5,0),且過(guò)點(diǎn)(3,0),
          (1)求雙曲線的標(biāo)準(zhǔn)方程.
          (2)求雙曲線的離心率及準(zhǔn)線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,一條漸近線方程為y=x,且過(guò)點(diǎn)(4,-
          10
          )

          (1)求雙曲線方程;
          (2)設(shè)A點(diǎn)坐標(biāo)為(0,2),求雙曲線上距點(diǎn)A最近的點(diǎn)P的坐標(biāo)及相應(yīng)的距離|PA|.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在坐標(biāo)軸上,一條漸近線方程為y=x,且過(guò)點(diǎn)(4,-
          10
          )
          ,A點(diǎn)坐標(biāo)為(0,2),則雙曲線上距點(diǎn)A距離最短的點(diǎn)的坐標(biāo)是
          7
          ,1)
          7
          ,1)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•豐臺(tái)區(qū)一模)已知雙曲線的中心在原點(diǎn),焦點(diǎn)在x軸上,一條漸近線方程為y=
          3
          4
          x
          ,則該雙曲線的離心率是
          5
          4
          5
          4

          查看答案和解析>>

          同步練習(xí)冊(cè)答案