【題目】下列四個命題中,正確的是( )
①兩個平面同時垂直第三個平面,則這兩個平面可能互相垂直
②方程
表示經(jīng)過第一、二、三象限的直線
③若一個平面中有4個不共線的點到另一個平面的距離相等,則這兩個平面平行
④方程可以表示經(jīng)過兩點
的任意直線
A. ②③ B. ①④ C. ①②④ D. ①②③④
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,
.
(1)求證:PD⊥平面PAB;
(2)求直線PB與平面PCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓.
(1)若橢圓的右焦點坐標(biāo)為
,求
的值;
(2)由橢圓上不同三點構(gòu)成三角形稱為橢圓的內(nèi)接三角形.若以
為直角頂點的橢圓
的內(nèi)接等腰直角三角形恰有三個,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 已知實數(shù).
滿足方程
,當(dāng)
(
)時,由此方程可以確定一個偶函數(shù)
,則拋物線
的焦點
到點
的軌跡上點的距離最大值為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個正方體的展開圖,如果將它還原為正方體,那么NC、DE、AF、BM這四條線段所在的直線是異面直線的有多少對?試以其中一對為例進(jìn)行證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,
都是單調(diào)遞增數(shù)列,若將這兩個數(shù)列的項按由小到大的順序排成一列(相同的項視為一項),則得到一個新數(shù)列
.
(1)設(shè)數(shù)列、
分別為等差、等比數(shù)列,若
,
,
,求
;
(2)設(shè)的首項為1,各項為正整數(shù),
,若新數(shù)列
是等差數(shù)列,求數(shù)列
的前
項和
;
(3)設(shè)(
是不小于2的正整數(shù)),
,是否存在等差數(shù)列
,使得對任意的
,在
與
之間數(shù)列
的項數(shù)總是
?若存在,請給出一個滿足題意的等差數(shù)列
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
是矩形,面
底面
,且
是邊長為
的等邊三角形,
,
在
上,且
∥面BDM.
(1)求直線PC與平面BDM所成角的正弦值;
(2)求平面BDM與平面PAD所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (
為常數(shù),
為自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)時,討論函數(shù)
在區(qū)間
上極值點的個數(shù);
(Ⅱ)當(dāng),
時,對任意的
都有
成立,求正實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,
底面
,底面
是直角梯形,
,
,
,
是
的中點.
(1)求證:平面平面
;
(2)若二面角的余弦值為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com