日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某手機(jī)生產(chǎn)企業(yè)為了對(duì)研發(fā)的一批最新款手機(jī)進(jìn)行合理定價(jià),將該款手機(jī)按事先擬定的價(jià)格進(jìn)行試銷,得到單價(jià)(單位:千元)與銷量(單位:百件)的關(guān)系如下表所示:

          單價(jià)(千元)

          1

          1.5

          2

          2.5

          3

          銷量(百件)

          10

          8

          7

          6

          已知.

          (Ⅰ)若變量,具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(jià)(千元)的線性回歸方程;

          (Ⅱ)用(Ⅰ)中所求的線性回歸方程得到與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值,當(dāng)銷售數(shù)據(jù)對(duì)應(yīng)的殘差滿足時(shí),則稱為一個(gè)好數(shù)據(jù),現(xiàn)從5個(gè)銷售數(shù)據(jù)中任取3個(gè),求其中好數(shù)據(jù)的個(gè)數(shù)的分布列和數(shù)學(xué)期望.

          參考公式:.

          【答案】(Ⅰ)(Ⅱ)見解析,

          【解析】

          (Ⅰ)由可求出,求出,再分別計(jì)算出,代入公式可求出,由求出,從而得到線性回歸方程;

          (Ⅱ)利用的值判斷共有三個(gè)好數(shù)據(jù),再計(jì)算對(duì)應(yīng)的概率值,列出分布列,計(jì)算數(shù)學(xué)期望即可.

          (Ⅰ)由,可得

          ,

          ,

          ,

          代入得

          ,

          ∴回歸直線方程為.

          (Ⅱ)

          ,

          ,

          ,

          共有3個(gè)好數(shù)據(jù)”.

          ,

          的分布列為:

          1

          2

          3

          的期望值為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某公司為了鼓勵(lì)運(yùn)動(dòng)提高所有用戶的身體素質(zhì),特推出一款運(yùn)動(dòng)計(jì)步數(shù)的軟件,所有用戶都可以通過每天累計(jì)的步數(shù)瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究“日平均走步數(shù)和性別是否有關(guān)”,統(tǒng)計(jì)了20191月份所有用戶的日平均步數(shù),規(guī)定日平均步數(shù)不少于8000的為“運(yùn)動(dòng)達(dá)人”,步數(shù)在8000以下的為“非運(yùn)動(dòng)達(dá)人”,采用按性別分層抽樣的方式抽取了100個(gè)用戶,得到如下列聯(lián)表:

          運(yùn)動(dòng)達(dá)人

          非運(yùn)動(dòng)達(dá)人

          總計(jì)

          35

          60

          26

          總計(jì)

          100

          1)(i)將列聯(lián)表補(bǔ)充完整;

          ii)據(jù)此列聯(lián)表判斷,能否有的把握認(rèn)為“日平均走步數(shù)和性別是否有關(guān)”?

          2)將頻率視作概率,從該公司的所有人“運(yùn)動(dòng)達(dá)人”中任意抽取3個(gè)用戶,求抽取的用戶中女用戶人數(shù)的分布列及期望.

          附:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】《周髀算經(jīng)》中給出了勾股定理的絕妙證明.如圖是趙爽弦圖及注文.弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成朱色及黃色,其面積稱為朱實(shí)、黃實(shí).×+(股-勾)2=4×朱實(shí)+黃實(shí)=弦實(shí),化簡(jiǎn)得勾2+2=2.若圖中勾股形的勾股比為,向弦圖內(nèi)隨機(jī)拋擲100顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘顆數(shù)大約為( )(參考數(shù)據(jù):,

          A.2B.4C.6D.8

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知x,y,z均為正數(shù).

          1)若xy1,證明:|x+z||y+z|4xyz

          2)若,求2xy2yz2xz的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】疫情爆發(fā)以來(lái),相關(guān)疫苗企業(yè)發(fā)揮專業(yè)優(yōu)勢(shì)與技術(shù)優(yōu)勢(shì)爭(zhēng)分奪秒開展疫苗研發(fā).為測(cè)試疫苗的有效性(若疫苗有效的概率小于90%,則認(rèn)為測(cè)試沒有通過),選定2000個(gè)樣本分成三組,測(cè)試結(jié)果如下表:

          疫苗有效

          673

          疫苗無(wú)效

          77

          90

          已知在全體樣本中隨機(jī)抽取1個(gè),抽到組疫苗有效的概率是0.33.

          1)求的值;

          2)現(xiàn)用分層抽樣的方法在全體樣本中抽取360個(gè)測(cè)試結(jié)果,求組應(yīng)抽取多少個(gè)?

          3)已知,,求疫苗能通過測(cè)試的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          1)討論的導(dǎo)數(shù)的單調(diào)性;

          2)若有兩個(gè)極值點(diǎn),,求實(shí)數(shù)的取值范圍,并證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在幾何體中,,直角梯形中,,,且,且.

          1)求證:平面平面;

          2)若直線與平面所成角的正切值為,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在正方體中,點(diǎn)、分別是棱的中點(diǎn),給出下列結(jié)論:

          ①直線所成角為;②正方體的所有棱中與直線異面的有條;③直線平面;④平面平面.其中正確的是(

          A.①②B.②③C.②④D.①④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為為參數(shù),曲線上的點(diǎn)的極坐標(biāo)分別為

          1)過O作線段的垂線,垂足為H,求點(diǎn)H的軌跡的直角坐標(biāo)方程;

          2)求兩點(diǎn)間的距離的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案