日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,正方體ABCD—A1B1C1D1的棱長(zhǎng)為1,EF、MN分別是A1B1、BC、C1D1B1C1的中點(diǎn).

          (1)用向量方法求直線EFMN的夾角;

          (2)求直線MF與平面ENF所成角的余弦值;

          (3)求二面角N-EF-M的平面角的正切值.

          思路解析:本題利用線線角、線面角、面面角的求法.

          解:設(shè)=i,=j,=k,以i、j、k為坐標(biāo)向量建立空間直角坐標(biāo)系Axyz,

          則有E(,0,1,),F(1,,0),M(,1,1),N(1,,1).

          (1)∵

          EFMN,即直線EFMN的夾角為90°.

          (2)由于=(0,0,1),

          =0.∴FNMN.

          EFFN=F,∴MN⊥平面ENF.

          MN平面MNF,∴平面MNF⊥平面ENF.

          (3)在平面NEF中,過(guò)點(diǎn)NNGEF于點(diǎn)G,連結(jié)MG,由三垂線定理,得MGEF.

          ∴∠MGN為二面角N-EF-M的平面角.

          在Rt△NEF中,NG=

          ∴在Rt△MNG中,tan∠MGN=

          ∴二面角M-EF-N的平面角的正切值為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,它的各個(gè)頂點(diǎn)都在球O的球面上,問(wèn)球O的表面積.
          (1) 如果球O和這個(gè)正方體的六個(gè)面都相切,則有S=
           

          (2)如果球O和這個(gè)正方體的各條棱都相切,則有S=
           

          精英家教網(wǎng)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為BB1和A1D1的中點(diǎn).證明:向量
          A1B
          B1C
          、
          EF
          是共面向量.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,正方體ABCD-A1B1C1D1棱長(zhǎng)為8,E、F分別為AD1,CD1中點(diǎn),G、H分別為棱DA,DC上動(dòng)點(diǎn),且EH⊥FG.
          (1)求GH長(zhǎng)的取值范圍;
          (2)當(dāng)GH取得最小值時(shí),求證:EH與FG共面;并求出此時(shí)EH與FG的交點(diǎn)P到直線B1B的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,正方體ABCD-A1B1C1D1中,若E、F、G分別為棱BC、C1C、B1C1的中點(diǎn),O1、O2分別為四邊形ADD1A1、A1B1C1D1的中心,則下列各組中的四個(gè)點(diǎn)不在同一個(gè)平面上的是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,正方體ABCD-A1B1C1D1中,E、F、G、H分別是所在棱的三等分點(diǎn),且BF=DE=C1G=C1H=
          13
          AB

          (1)證明:直線EH與FG共面;
          (2)若正方體的棱長(zhǎng)為3,求幾何體GHC1-EFC的體積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案