日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. .(12分)如圖,在Rt△ABC中,∠C=90º,BE平分∠ABC交AC于點E,點D在AB上,

          DE⊥EB

           (1)求證:AC是△BDE的外接圓的切線;

           (2)若AD=6,AE=6,求BC的長。

           

          【答案】

          (1) 見解析;(2) BC=4。

          【解析】本題主要考查了切線的判定定理的應用,直角三角形基本關(guān)系的應用,屬于基本知識的簡單綜合.

          (Ⅰ)要證明AC是△BDE的外接圓的切線,故考慮取BD的中點O,只要證明OE⊥AC,結(jié)合∠C=90°,證明BC∥OE即可

          (Ⅱ)設⊙O的半徑為r,則在△AOE中,由OA2=OE2+AE2,可求r,代入可得OA,2OE,Rt△AOE中,可求∠A,∠AOE,進而可求∠CBE=∠OBE,在BCE中,通過EC與BE的關(guān)系可求

          解:(1)取BD的中點O,連結(jié)OE

          ∵DE⊥EB

          ∴DB是△BED的外接圓的直徑,

          ∴OE是⊙O的半徑

          ∴BE平分∠ABC

          ∴∠ABE=∠EBC

          ∵OE=OB  ∴∠ABE=∠DEO

          ∴∠DEO=∠EBC,∴EO∥BC

          ∵∠C=90º,∴∠AEO=90º   ∴AC是⊙O的切線……….6分

          (2)由(1)得:AE2=AD•AB

          ∴(6)2=6•AB,AB=12,∴OE=OD=3,AO=9

          ∵EO∥BC,∴,即,∴BC=4………12分

           

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          (08年福建師大附中模擬)(本小題滿分12分)

          如圖,在四棱錐中,底面是邊長為2的正方形,側(cè)面是正三角形,且平面平面,為棱的中點

             (1)求證:平面;

             (2)求二面角的大;

             (3)求點到平面的距離.

           

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2013屆遼寧省分校高三12月月考理科數(shù)學試卷(解析版) 題型:解答題

          (本小題滿分12分)如圖,在四棱錐中,底面是矩形,,、分別為線段、的中點,⊥底面.

          (Ⅰ)求證:∥平面;

          (Ⅱ)求證:平面^平面;

          (Ⅲ)若,求三棱錐的體積.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012-2013學年河南省南陽市高三第八次周考理科數(shù)學試卷(解析版) 題型:解答題

          (本小題滿分12分)如圖,在上,過點//的位置(),

          使得.

          (I)求證:  (II)試問:當點上移動時,二面角的平面角的余弦值是否為定值?若是,求出定值,若不是,說明理由.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2014屆黑龍江省年高一下學期期末理科數(shù)學試卷(解析版) 題型:解答題

          (本小題滿分12分)

          如圖,在幾何體P-ABCD中,四邊形ABCD為矩形,PA⊥平面ABCD,AB=PA=2.

          (1)當AD=2時,求證:平面PBD⊥平面PAC;

          (2)若PC與AD所成角為45°,求幾何體P-ABCD的體積.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2010-2011學年遼寧省丹東市四校協(xié)作體高三第二次聯(lián)合考試理科數(shù)學卷 題型:解答題

          (本小題滿分12分)

          如圖,在三棱錐中,,,, 點,分別在棱上,且,

             (I)求證:平面;

             (II)當的中點時,求與平面所成的角的大小;

             (III)是否存在點使得二面角為直二面角?并說明理由.

           

          查看答案和解析>>

          同步練習冊答案