【題目】設(shè)函數(shù).
(1)若,
,求函數(shù)
的極值;
(2)若是函數(shù)
的一個極值點,試求出
關(guān)于
的關(guān)系式(即用
表示
),并確定
的單調(diào)區(qū)間;(提示:應(yīng)注意對
的取值范圍進行討論)
(3)在(2)的條件下,設(shè),函數(shù)
,若存在
使得
成立,求
的取值范圍.
【答案】(1),
;(2)
,見解析; (3)
.
【解析】
(1)求出導(dǎo)函數(shù)的根,判斷根左右兩邊導(dǎo)函數(shù)的符號,得到函數(shù)的單調(diào)性,據(jù)極大值極小值的定義求出極值;(2)據(jù)極值點處的導(dǎo)函數(shù)值為0得到a,b的關(guān)系;代入導(dǎo)函數(shù)中求出導(dǎo)函數(shù)的兩根,討論兩根的大小;判斷根左右兩邊導(dǎo)函數(shù)的符號,據(jù)導(dǎo)函數(shù)與單調(diào)性的關(guān)系求出單調(diào)區(qū)間;(3)據(jù)函數(shù)的單調(diào)性求出兩個函數(shù)的值域,求出函數(shù)值的最小距離,最小距離小于1求出a的范圍
(1)∵
當(dāng),
時,
則
令得
,∵
∴
,解得
,
∵當(dāng)時,
,當(dāng)
時
,當(dāng)
時
∴當(dāng)時,函數(shù)
有極大值,
,
當(dāng)時,函數(shù)
有極小值,
.
(2)由(1)知
∵是函數(shù)
的一個極值點
∴,即
,解得
,
則
令,得
或
∵是極值點,∴
,即
當(dāng)即
時,由
得
或
由得
當(dāng)即
時,由
得
或
由得
綜上可知:當(dāng)時,單調(diào)遞增區(qū)間為
和
,遞減區(qū)間為
當(dāng)時,單調(diào)遞增區(qū)間為
和
,遞減區(qū)間為
(3)由(2)知,當(dāng)時,
在區(qū)間
上的單調(diào)遞減,在區(qū)間
上單調(diào)遞增,
∴函數(shù)在區(qū)間
上的最小值為
又∵,
,
∴函數(shù)在區(qū)間
上的值域是
,即
又在區(qū)間
上是增函數(shù),
且它在區(qū)間上的值域是
∵,
∴存在使得
成立只須僅須.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高二年級的第二學(xué)期,因某學(xué)科的任課教師王老師調(diào)動工作,于是更換了另一名教師趙老師繼任.第二學(xué)期結(jié)束后從全學(xué)年的該門課的學(xué)生考試成績中用隨機抽樣的方法抽取了容量為50的樣本,用莖葉圖表示如下:
學(xué)校秉持均衡發(fā)展、素質(zhì)教育的辦學(xué)理念,對教師的教學(xué)成績實行績效考核,績效考核方案規(guī)定:每個學(xué)期的學(xué)生成績中與其中位數(shù)相差在范圍內(nèi)(含
)的為合格,此時相應(yīng)的給教師賦分為1分;與中位數(shù)之差大于10的為優(yōu)秀,此時相應(yīng)的給教師賦分為2分;與中位數(shù)之差小于-10的為不合格,此時相應(yīng)的給教師賦分為-1分.
(Ⅰ)問王老師和趙老師的教學(xué)績效考核平均成績哪個大?
(Ⅱ)是否有的把握認(rèn)為“學(xué)生成績?nèi)〉脙?yōu)秀與更換老師有關(guān)”.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在2019年的冬令營考試成績中隨機抽取100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如下圖所示:
組號 | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | 0.050 | |
第2組 | 35 | 0.350 | |
第3組 | 10 | 0.100 | |
第4組 | 20 | 0.200 | |
第5組 | 30 | 0.300 | |
合計 | 100 | 1.00 |
(1)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學(xué)生進入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進入第二輪面試?
(2)在(1)的前提下,高校決定在這6名學(xué)生中,隨機抽取2名學(xué)生接受A考官進行面試,求第4組至少有一名學(xué)生被A考官測試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
.
(1)若是
上的增函數(shù),求
的取值范圍;
(2)若函數(shù)有兩個極值點,判斷函數(shù)
零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,已知,且2an+1=an+1(n∈N*).
(1)求證:數(shù)列{an-1}是等比數(shù)列;
(2)若bn=nan,求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,楔形幾何體由一個三棱柱截去部分后所得,底面
側(cè)面
,
,楔面
是邊長為2的正三角形,點
在側(cè)面
的射影是矩形
的中心
,點
在
上,且
(1)證明:平面
;
(2)求楔面與側(cè)面
所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,長方體中,
,
,點
,
,
分別為
,
,
的中點,過點
的平面
與平面
平行,且與長方體的面相交,交線圍成一個幾何圖形.
(1)在圖中畫出這個幾何圖形,并求這個幾何圖形的面積(畫圖說出作法,不用說明理由);
(2)求證:平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間與極值;
(Ⅱ)若不等式對任意
恒成立,求實數(shù)
的取值范圍;
(Ⅲ)求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com