日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          1)討論的單調(diào)性;

          2)如果方程有兩個不相等的解,且,證明:.

          【答案】1)見解析(2)見解析

          【解析】

          1)對函數(shù)進行求導(dǎo)得,再對進行分類討論,解不等式,即可得答案;

          2)當(dāng)時,單調(diào)遞增,至多一個根,不符合題意;當(dāng)時,單調(diào)遞減,在單調(diào)遞增,則.不妨設(shè),只要證,再利用函數(shù)的單調(diào)性,即可證得結(jié)論.

          1.

          當(dāng)時,單調(diào)遞增;

          ②當(dāng)時,單調(diào)遞減;

          單調(diào)遞增.

          綜上:當(dāng)時,單調(diào)遞增;

          當(dāng)時,單調(diào)遞減,在單調(diào)遞增.

          2)由(1)知,

          當(dāng)時,單調(diào)遞增,至多一個根,不符合題意;

          當(dāng)時,單調(diào)遞減,在單調(diào)遞增,則.

          不妨設(shè),

          要證,即證,即證,即證.

          因為單調(diào)遞增,即證

          因為,所以即證,即證.

          .

          當(dāng)時,單調(diào)遞減,又,

          所以時,,即,

          .

          ,所以,所以.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】有一種密碼,明文是由三個字符組成,密碼是由明文對應(yīng)的五個數(shù)字組成,編碼規(guī)則如下表:明文由表中每一排取一個字符組成,且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,對應(yīng)的密碼由明文對應(yīng)的數(shù)字按相同的次序排成一排組成.


          第一排

          明文字符

          A

          B

          C

          D

          密碼字符

          11

          12

          13

          14


          第二排

          明文字符

          E

          F

          G

          H

          密碼字符

          21

          22

          23

          24


          第三排

          明文字符

          M

          N

          P

          Q

          密碼字符

          1

          2

          3

          4

          設(shè)隨機變量表示密碼中不同數(shù)字的個數(shù).

          (Ⅰ); (Ⅱ)求隨機變量的分布列和它的數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為美化校園,江蘇省淮陰中學(xué)將一個半圓形的邊角地改造為花園.如圖所示,O為圓心,半徑為1千米,點A、BP都在半圓弧上,設(shè)∠NOP=POA=,∠AOB=,且.

          1)請用分別表示線段NABM的長度;

          2)若在花園內(nèi)鋪設(shè)一條參觀線路,由線段NAAB、BM三部分組成,則當(dāng)取何值時,參觀線路最長?

          3)若在花園內(nèi)的扇形ONP和四邊形OMBA內(nèi)種滿杜鵑花,則當(dāng)取何值時,杜鵑花的種植總面積最大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對于數(shù)列{an},若從第二項起的每一項均大于該項之前的所有項的和,則稱{an}P數(shù)列.

          1)若{an}的前n項和Sn3n+2,試判斷{an}是否是P數(shù)列,并說明理由;

          2)設(shè)數(shù)列a1,a2,a3,,a10是首項為﹣1、公差為d的等差數(shù)列,若該數(shù)列是P數(shù)列,求d的取值范圍;

          3)設(shè)無窮數(shù)列{an}是首項為a、公比為q的等比數(shù)列,有窮數(shù)列{bn}{cn}是從{an}中取出部分項按原來的順序所組成的不同數(shù)列,其所有項和分別為T1,T2,求{an}P數(shù)列時aq所滿足的條件,并證明命題a0T1T2,則{an}不是P數(shù)列”.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】由我國引領(lǐng)的5G時代已經(jīng)到來,5G的發(fā)展將直接帶動包括運營、制造、服務(wù)在內(nèi)的通信行業(yè)整體的快速發(fā)展,進而對增長產(chǎn)生直接貢獻(xiàn),并通過產(chǎn)業(yè)間的關(guān)聯(lián)效應(yīng)和波及效應(yīng),間接帶動國民經(jīng)濟各行業(yè)的發(fā)展,創(chuàng)造岀更多的經(jīng)濟增加值.如圖是某單位結(jié)合近年數(shù)據(jù),對今后幾年的5G經(jīng)濟產(chǎn)出所做的預(yù)測.結(jié)合下圖,下列說法正確的是(

          A.5G的發(fā)展帶動今后幾年的總經(jīng)濟產(chǎn)出逐年增加

          B.設(shè)備制造商的經(jīng)濟產(chǎn)出前期增長較快,后期放緩

          C.設(shè)備制造商在各年的總經(jīng)濟產(chǎn)出中一直處于領(lǐng)先地位

          D.信息服務(wù)商與運營商的經(jīng)濟產(chǎn)出的差距有逐步拉大的趨勢

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某工廠共有男女員工500人,現(xiàn)從中抽取100位員工對他們每月完成合格產(chǎn)品的件數(shù)統(tǒng)計如下:

          每月完成合格產(chǎn)品的件數(shù)(單位:百件)

          頻數(shù)

          10

          45

          35

          6

          4

          男員工人數(shù)

          7

          23

          18

          1

          1

          (1)其中每月完成合格產(chǎn)品的件數(shù)不少于3200件的員工被評為“生產(chǎn)能手”.由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有95%的把握認(rèn)為“生產(chǎn)能手”與性別有關(guān)?

          非“生產(chǎn)能手”

          “生產(chǎn)能手”

          合計

          男員工

          span>女員工

          合計

          (2)為提高員工勞動的積極性,工廠實行累進計件工資制:規(guī)定每月完成合格產(chǎn)品的件數(shù)在定額2600件以內(nèi)的,計件單價為1元;超出件的部分,累進計件單價為1.2元;超出件的部分,累進計件單價為1.3元;超出400件以上的部分,累進計件單價為1.4元.將這4段中各段的頻率視為相應(yīng)的概率,在該廠男員工中選取1人,女員工中隨機選取2人進行工資調(diào)查,設(shè)實得計件工資(實得計件工資=定額計件工資+超定額計件工資)不少于3100元的人數(shù)為,求的分布列和數(shù)學(xué)期望.

          附:,

          .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形中,,為邊的中點,以為折痕把折起,使點到達(dá)點的位置,且使平面平面.

          1)證明:平面;

          2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】過橢圓的左頂點斜率為2的直線,與橢圓的另一個交點為,與軸的交點為,已知.

          1)求橢圓的離心率;

          2)設(shè)動直線與橢圓有且只有一個公共點,且與直線相交于點,若軸上存在一定點,使得,求橢圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出1t該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每1t虧損300.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直方圖,如右圖所示.經(jīng)銷商為下一個銷售季度購進了130t該農(nóng)產(chǎn)品.x(單位:t,100≤x≤150)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的數(shù)量,T表示利潤.

          )將T表示為x的函數(shù)

          )根據(jù)直方圖估計利潤T不少于57000元的概率;

          )在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點值的概率(例如:若x,則取x=105,且x=105的概率等于需求量落入[100,110,求T的數(shù)學(xué)期望.

          查看答案和解析>>

          同步練習(xí)冊答案