日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)數(shù)列{an}滿足:
          (I)證明:對n∈N*恒成立;
          (II)令,判斷bn與bn+1的大小,并說明理由.
          【答案】分析:(1)證法一:用數(shù)學(xué)歸納法進(jìn)行證明.
          證法二:由遞推公式得,由此可知
          (2)解法一:由
          =可知bn+1<bn成立.
          解法二:由==
          =,可知bn+1<bn
          解答:解:(1)證法一:當(dāng)n=1時(shí),,不等式成立,
          假設(shè)n=k時(shí),成立(2分),
          當(dāng)n=k+1時(shí),.(5分)
          ∴n=k+1時(shí),時(shí)成立
          綜上由數(shù)學(xué)歸納法可知,對一切正整數(shù)成立(6分)
          證法二:由遞推公式得(2分)
          上述各式相加并化簡得=2n+2>2n+1+1+1(n≥2)(4分)
          又n=1時(shí),顯然成立,故(6分)
          (2)解法一:(8分)
          =(10分)
          又顯然bn>0(n∈N*),故bn+1<bn成立(12分)
          解法二:=(8分)
          =(10分)
          =
          故bn+12<bn2,因此bn+1<bn(12分)
          點(diǎn)評:本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要注意公式有靈活運(yùn)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)數(shù)列{an}滿足a1=0,an+1=can3+1-c,n∈N*,其中c為實(shí)數(shù)
          (1)證明:an∈[0,1]對任意n∈N*成立的充分必要條件是c∈[0,1];
          (2)設(shè)0<c<
          1
          3
          ,證明:an≥1-(3c)n-1,n∈N*;
          (3)設(shè)0<c<
          1
          3
          ,證明:
          a
          2
          1
          +
          a
          2
          2
          +…
          a
          2
          n
          >n+1-
          2
          1-3c
          ,n∈N*

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=
          1
          4x+m
          (m>0)
          ,當(dāng)x1、x2∈R且x1+x2=1時(shí),總有f(x1)+f(x2)=
          1
          2

          (1)求m的值;
          (2)設(shè)數(shù)列an滿足an=f(
          0
          n
          )+f(
          1
          n
          )+f(
          2
          n
          )+…+f(
          n
          n
          )
          ,求an的通項(xiàng)公式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)數(shù)列{an}滿足a1=a,an+1=can+1-c,n∈N*其中a,c為實(shí)數(shù),且c≠0
          (Ⅰ)求數(shù)列{an}的通項(xiàng)公式
          (Ⅱ)設(shè)a=
          1
          2
          ,c=
          1
          2
          ,bn=n(1-an),n∈N*,求數(shù)列{bn}的前n項(xiàng)和Sn;
          (Ⅲ)若0<an<1對任意n∈N*成立,求實(shí)數(shù)c的范圍.(理科做,文科不做)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)數(shù)列{an}滿足:a1=
          5
          6
          ,且an=
          1
          3
          an-1+
          1
          3
          (n∈N*,n≥2)
          (1)求證:數(shù)列{an-
          1
          2
          }為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)an;
          (2)求{an}的前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)n∈N*,不等式組
          x>0
          y>0
          y≤-nx+2n
          所表示的平面區(qū)域?yàn)镈n,把Dn內(nèi)的整點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn))按其到原點(diǎn)的距離從近到遠(yuǎn)排列成點(diǎn)列:(x1,y1),(x2,y2),…,(xn,yn
          (1)求(xn,yn);
          (2)設(shè)數(shù)列{an}滿足a1=x1an=
          y
          2
          n
          (
          1
          y
          2
          1
          +
          1
          y
          2
          2
          +…+
          1
          y
          2
          n-1
          ),(n≥2)
          ,求證:n≥2時(shí),
          an+1
          (n+1
          )
          2
           
          -
          an
          n
          2
           
          =
          1
          n
          2
           

          (3)在(2)的條件下,比較(1+
          1
          a1
          )(1+
          1
          a2
          )…(1+
          1
          an
          )
          與4的大。

          查看答案和解析>>

          同步練習(xí)冊答案