日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】我國古代數(shù)學(xué)名著《九章算術(shù)》中“開立圓術(shù)”曰:置積尺數(shù),以十六乘之,九而一,所得開立方除之,即立圓徑,“開立圓術(shù)”相當(dāng)于給出了已知球的體積V,求其直徑d的一個近似公式d≈ .人們還用過一些類似的近似公式.根據(jù)π=3.14159…..判斷,下列近似公式中最精確的一個是(
          A.d≈
          B.d≈
          C.d≈
          D.d≈

          【答案】D
          【解析】解:由V= ,解得d= 設(shè)選項中的常數(shù)為 ,則π= 選項A代入得π= =3.375;選項B代入得π= =3;
          選項C代入得π= =3.14;選項D代入得π= =3.142857
          由于D的值最接近π的真實值
          故選D.
          根據(jù)球的體積公式求出直徑,然后選項中的常數(shù)為 ,表示出π,將四個選項逐一代入,求出最接近真實值的那一個即可.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)集合M={x|x2+3x+2<0},集合 ,則M∪N=(
          A.{x|x≥﹣2}
          B.{x|x>﹣1}
          C.{x|x<﹣1}
          D.{x|x≤﹣2}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知中心在原點,焦點在軸上,離心率為的橢圓過點.

          (1)求橢圓方程;

          (2)設(shè)不過原點O的直線,與該橢圓交于PQ兩點,直線OPOQ的斜率依次為,滿足,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】正三角形的邊長為,將它沿高翻折,使點與點間的距離為,此時四面體外接球表面積為

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=ax2+x﹣lnx,(a>0). (Ⅰ)求f(x)的單調(diào)區(qū)間;
          (Ⅱ)設(shè)f(x)極值點為x0 , 若存在x1 , x2∈(0,+∞),且x1≠x2 , 使f(x1)=f(x2),求證:x1+x2>2x0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點A(0,0),若函數(shù)f(x)的圖象上存在兩點B、C到點A的距離相等,則稱該函數(shù)f(x)為“點距函數(shù)”,給定下列三個函數(shù):①y=﹣x+2;② ;③y=x+1.其中,“點距函數(shù)”的個數(shù)是(
          A.0
          B.1
          C.2
          D.3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.如圖,在陽馬P﹣ABCD中,側(cè)棱PD⊥底面ABCD,且PD=CD,過棱PC的中點E,作EF⊥PB交PB于點F,連接DE,DF,BD,BE.
          (1)證明:PB⊥平面DEF.試判斷四面體DBEF是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,說明理由;
          (2)若面DEF與面ABCD所成二面角的大小為 ,求 的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】17世紀(jì)日本數(shù)學(xué)家們對這個數(shù)學(xué)關(guān)于體積方法的問題還不了解,他們將體積公式“V=kD3”中的常數(shù)k稱為“立圓術(shù)”或“玉積率”,創(chuàng)用了求“玉積率”的獨特方法“會玉術(shù)”,其中,D為直徑,類似地,對于等邊圓柱(軸截面是正方形的圓柱叫做等邊圓柱)、正方體也有類似的體積公式V=kD3 , 其中,在等邊圓柱中,D表示底面圓的直徑;在正方體中,D表示棱長,假設(shè)運用此“會玉術(shù)”,求得的球、等邊圓柱、正方體的“玉積率”分別為k1 , k2 , k3=(
          A. :1
          B. :2
          C.1:3:
          D.1:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為調(diào)查高中生的數(shù)學(xué)成績與學(xué)生自主學(xué)習(xí)時間之間的相關(guān)關(guān)系,某重點高中數(shù)學(xué)教師對新入學(xué)的45名學(xué)生進(jìn)行了跟蹤調(diào)查,其中每周自主做數(shù)學(xué)題的時間不少于15小時的有19人,余下的人中,在高三模擬考試中數(shù)學(xué)平均成績不足120分的占 ,統(tǒng)計成績后,得到如下的2×2列聯(lián)表:

          分?jǐn)?shù)大于等于120分

          分?jǐn)?shù)不足120分

          合 計

          周做題時間不少于15小時

          4

          19

          周做題時間不足15小時

          合 計

          45

          (Ⅰ)請完成上面的2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認(rèn)為“高中生的數(shù)學(xué)成績與學(xué)生自主學(xué)習(xí)時間有關(guān)”;
          (Ⅱ)(i) 按照分層抽樣的方法,在上述樣本中,從分?jǐn)?shù)大于等于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到的不足120分且周做題時間不足15小時的人數(shù)是X,求X的分布列(概率用組合數(shù)算式表示);
          (ii) 若將頻率視為概率,從全校大于等于120分的學(xué)生中隨機(jī)抽取20人,求這些人中周做題時間不少于15小時的人數(shù)的期望和方差.
          附:

          P(K2≥k0

          0.050

          0.010

          0.001

          k0

          3.841

          6.635

          10.828

          查看答案和解析>>

          同步練習(xí)冊答案