日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在△ABC中,A,C為銳角,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,且
          (1)求cos(A+C)的值;
          (2)若,求a,b,c的值;
          (3)已知tan(α+A+C)=2,求的值.
          【答案】分析:(1)根據(jù)二倍角三角函數(shù)與同角三角函數(shù)的關(guān)系,算出cosA、sinA和cosC的值,最后用兩角和的余弦公式,即可求出cos(A+C)的值;
          (2)由(1)求出的cos(A+C)值,可得A+C=,從而算出sinB=,結(jié)合正弦定理得出a:b:c=2:5,再結(jié)合題意,不難得出三邊a,b,c的值;
          (3)由題意,tan(α+)=2,解之得tanα=,再將所求式的分子轉(zhuǎn)化為cos2α+sin2α,分子分母同除以cos2α轉(zhuǎn)化為關(guān)于tanα的式子,即可得到所求式子的值.
          解答:解:(1)∵,且A為銳角
          ∴cosA=,sinA==
          ∵sinC=,且C為銳角
          ∴cosC==
          因此,cos(A+C)=cosAcosC-sinAsinC=-=
          (2)∵cos(A+C)=,0<A+C<π,∴A+C=,得B=π-=,sinB=
          ∵sinA=,sinB=,sinC=,
          ∴sinA:sinB:sinC=2:5
          由正弦定理,得a:b:c=2:5,設(shè)a=2x,得b=5x,c=x
          ,得2x-x=
          ∴x=,可得a=,b=,c=1
          (3)由(2)知A+C=,得tan(α+)=2
          =2,解之得tanα=
          所以===
          點(diǎn)評(píng):本題給出三角形的兩個(gè)角A、C與邊a、c的關(guān)系式,求三邊的長(zhǎng)并求三角函數(shù)式的值,著重考查了三角恒等變形、三角形內(nèi)角和定理和用正余弦定理解三角形等知識(shí),屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在△ABC中,a比c長(zhǎng)4,b比c長(zhǎng)2,且最大角的余弦值是-
          1
          2
          ,則△ABC的面積等于
          15
          3
          4
          15
          3
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在△ABC中,A,C為銳角,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,且cos2A=
          3
          5
          ,sinC=
          10
          10

          (1)求cos(A+C)的值;
          (2)若a-c=
          2
          -1
          ,求a,b,c的值;
          (3)已知tan(α+A+C)=2,求
          1
          2sinαcosα+cos2α
          的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•薊縣二模)在△ABC中,A,C為銳角,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,且cos2A=
          3
          5
          ,sinC=
          10
          10

          (Ⅰ)求cos(A+C)的值;
          (Ⅱ)若a-c=
          2
          -1,求a,b,c的值;
          (Ⅲ)求函數(shù)y=tan(
          x
          2
          +A+C)
          的最小正周期和定義域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          我們知道在△ABC中有A+B+C=π,已知B=
          π3
          ,求sinA+sinC的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三高考?jí)狠S理科數(shù)學(xué)試卷(解析版) 題型:填空題

          在△ABC中,角A,B,C的對(duì)邊分別a,b,c,若.則直線被圓 所截得的弦長(zhǎng)為       

           

          查看答案和解析>>