日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)定義在R上的函數(shù)f(x)滿足f(x)•f(x+2)=13,若f(1)=2,則f(99)=(  )
          A、13
          B、2
          C、
          13
          2
          D、
          2
          13
          分析:根據(jù)f(1)=2,f(x)•f(x+2)=13先求出f(3)=
          13
          2
          ,再由f(3)求出f(5),依次求出f(7)、f(9)觀察規(guī)律可求出f(x)的解析式,最終得到答案.
          解答:解:∵f(x)•f(x+2)=13且f(1)=2
          f(3)=
          13
          f(1)
          =
          13
          2
          ,f(5)=
          13
          f(3)
          =2
          f(7)=
          13
          f(5)
          =
          13
          2
          ,f(9)=
          13
          f(7)
          =2
          ,
          f(2n-1)=
          2 n為奇數(shù)
          13
          2
           n為偶數(shù)

          f(99)=f(2×100-1)=
          13
          2

          故選C.
          點評:此題重點考查遞推關(guān)系下的函數(shù)求值;此類題的解決方法一般是求出函數(shù)解析式后代值,或者得到函數(shù)的周期性求解.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)定義在R上的函數(shù)f(x)=
          1
          x-2
          (x>2)
          1
          2-x
          (x<2)
          1(x=2)
          ,若關(guān)于x的方程f2(x)+af(x)+b=3有且只有3個不同實數(shù)解x1、x2、x3,且x1<x2<x3,則x12+x22+x32=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)定義在R上的函數(shù)f(x)滿足f(x)•f(x+2)=3,若f(1)=2,則f(5)=
          2
          2
          ;f(2011)=
          3
          2
          3
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•順義區(qū)二模)設(shè)定義在R上的函數(shù)f(x)是最小正周期為2π的偶函數(shù),f′(x)是f(x)的導(dǎo)函數(shù).當(dāng)x∈[0,π]時,0<f(x)<1;當(dāng)x∈(0,π)且x≠
          π
          2
          時,(x-
          π
          2
          )f′(x)<0
          .則函數(shù)y=f(x)-cosx在[-3π,3π]上的零點個數(shù)為
          6
          6

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)定義在R上的函數(shù)f(x)滿足f(x+π)=f(x-π),f(
          π
          2
          -x
          )=f(
          π
          2
          +x
          ),當(dāng)x∈[-
          π
          2
          ,
          π
          2
          ]
          時,0<f(x)<1;當(dāng)x∈(-
          π
          2
          ,
          π
          2
          )
          且x≠0時,x•f′(x)<0,則y=f(x)與y=cosx的圖象在[-2π,2π]上的交點個數(shù)是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)定義在R上的函數(shù)f(x)同時滿足以下條件:①f(x+1)=-f(x)對任意的x都成立;②當(dāng)x∈[0,1]時,f(x)=ex-e•cos
          πx
          2
          +m(其中e=2.71828…是自然對數(shù)的底數(shù),m是常數(shù)).記f(x)在區(qū)間[2013,2016]上的零點個數(shù)為n,則( 。
          A、m=-
          1
          2
          ,n=6
          B、m=1-e,n=5
          C、m=-
          1
          2
          ,n=3
          D、m=e-1,n=4

          查看答案和解析>>

          同步練習(xí)冊答案