已知拋物線,直線
與E交于A、B兩點(diǎn),且
,其中O為原點(diǎn).
(1)求拋物線E的方程;
(2)點(diǎn)C坐標(biāo)為,記直線CA、CB的斜率分別為
,證明:
為定值.
(1);(2)證明過(guò)程詳見(jiàn)解析.
解析試題分析:本題考查拋物線的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、向量的數(shù)量積等基礎(chǔ)知識(shí),考查用代數(shù)方法研究圓錐曲線的性質(zhì),考查運(yùn)算求解能力、綜合分析和解決問(wèn)題的能力.第一問(wèn),將直線與拋物線方程聯(lián)立,消去參數(shù),得到關(guān)于
的方程,得到兩根之和兩根之積,設(shè)出點(diǎn)
的坐標(biāo),代入到
中,化簡(jiǎn)表達(dá)式,再將上述兩根之和兩根之積代入得出
的值,從而得到拋物線的標(biāo)準(zhǔn)方程;第二問(wèn),先利用點(diǎn)
的坐標(biāo)得出直線
的斜率,再根據(jù)拋物線方程轉(zhuǎn)化參數(shù)
,得到
和
的關(guān)系式,代入到所求證的式子中,將上一問(wèn)中的兩根之和兩根之積代入,化簡(jiǎn)表達(dá)式得出常數(shù)即可.
試題解析:(Ⅰ)將代入
,得
. 2分
其中
設(shè),
,則
,
. 4分
.
由已知,,
.
所以拋物線的方程
. 6分
(Ⅱ)由(Ⅰ)知,,
.
,同理
, 10分
所以. 12分
考點(diǎn):1.拋物線的標(biāo)準(zhǔn)方程;2.韋達(dá)定理;3.向量的數(shù)量積;4.直線的斜率公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)點(diǎn)、
分別是橢圓
的左、右焦點(diǎn),
為橢圓
上任意一點(diǎn),且
的最小值為
.
(I)求橢圓的方程;
(II)設(shè)直線(直線
、
不重合),若
、
均與橢圓
相切,試探究在
軸上是否存在定點(diǎn)
,使點(diǎn)
到
、
的距離之積恒為1?若存在,請(qǐng)求出點(diǎn)
坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知是橢圓
的右焦點(diǎn);圓
與
軸交于
兩點(diǎn),其中
是橢圓
的左焦點(diǎn).
(1)求橢圓的離心率;
(2)設(shè)圓與
軸的正半軸的交點(diǎn)為
,點(diǎn)
是點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn),試判斷直線
與圓
的位置關(guān)系;
(3)設(shè)直線與圓
交于另一點(diǎn)
,若
的面積為
,求橢圓
的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在
軸上,以兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)為頂點(diǎn)的四邊形是一個(gè)面積為
的正方形(記為
)
(Ⅰ)求橢圓的方程
(Ⅱ)設(shè)點(diǎn)是直線
與
軸的交點(diǎn),過(guò)點(diǎn)
的直線
與橢圓
相交于
兩點(diǎn),當(dāng)線段
的中點(diǎn)落在正方形
內(nèi)(包括邊界)時(shí),求直線
斜率的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
給定橢圓C:,若橢圓C的一個(gè)焦點(diǎn)為F(
,0),其短軸上的一個(gè)端點(diǎn)到F的距離為
.
(I)求橢圓C的方程;
(II)已知斜率為k(k≠0)的直線l與橢圓C交于不同的兩點(diǎn)A,B,點(diǎn)Q滿足且
=0,其中N為橢圓的下頂點(diǎn),求直線在y軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的左、右焦點(diǎn)分別為,橢圓的離心率為
,且橢圓C經(jīng)過(guò)點(diǎn)
.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若線段是橢圓過(guò)點(diǎn)
的弦,且
,求
內(nèi)切圓面積最大時(shí)實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(13分)如圖,某隧道設(shè)計(jì)為雙向四車(chē)道,車(chē)道總寬20m,要求通行車(chē)輛限高5m,隧道全長(zhǎng)2.5km,隧道的兩側(cè)是與地面垂直的墻,高度為3米,隧道上部拱線近似地看成半個(gè)橢圓。
(1)若最大拱高h(yuǎn)為6 m,則隧道設(shè)計(jì)的拱寬是多少?
(2)若要使隧道上方半橢圓部分的土方工程 量最小,則應(yīng)如何設(shè)計(jì)拱高h(yuǎn)和拱寬?(已知:橢圓
+
=1的面積公式為S=
,柱體體積為底面積乘以高。)
(3)為了使隧道內(nèi)部美觀,要求在拱線上找兩個(gè)點(diǎn)M、N,使它們所在位置的高度恰好是限高5m,現(xiàn)以M、N以及橢圓的左、右頂點(diǎn)為支點(diǎn),用合金鋼板把隧道拱線部分連接封閉,形成一個(gè)梯形,若l=30m,梯形兩腰所在側(cè)面單位面積的鋼板造價(jià)是梯形頂部單位面積鋼板造價(jià)的倍,試確定M、N的位置以及
的值,使總造價(jià)最少。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓錐曲線的兩個(gè)焦點(diǎn)坐標(biāo)是
,且離心率為
;
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)曲線表示曲線
的
軸左邊部分,若直線
與曲線
相交于
兩點(diǎn),求
的取值范圍;
(Ⅲ)在條件(Ⅱ)下,如果,且曲線
上存在點(diǎn)
,使
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的焦點(diǎn)為
,
,且經(jīng)過(guò)點(diǎn)
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過(guò)的直線
與橢圓
交于
、
兩點(diǎn),問(wèn)在橢圓
上是否存在一點(diǎn)
,使四邊形
為平行四邊形,若存在,求出直線
的方程,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com