日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知圓,經(jīng)過橢圓的右焦點(diǎn)F及上頂點(diǎn)B,過圓外一點(diǎn)傾斜角為的直線交橢圓于C,D兩點(diǎn),
          (1)求橢圓的方程;
          (2)若右焦點(diǎn)F在以線段CD為直徑的圓E的外部,求m的取值范圍.

          (1); (2)

          解析試題分析:(1)依據(jù)題意可求得F,B的坐標(biāo),求得c和b,進(jìn)而求得a,則橢圓的方程可得;(2)設(shè)出直線l的方程,與橢圓方程聯(lián)立消去,利用判別式大于0求得m的范圍,設(shè)出C,D的坐標(biāo),利用韋達(dá)定理表示出x1+x2和x1x2,進(jìn)而利用直線方程求得y1y2,表示出,進(jìn)而求得的表達(dá)式,利用F在圓E的內(nèi)部判斷出<0求得m的范圍,最后綜合可求得m的范圍.
          解:(1)∵圓G:經(jīng)過點(diǎn)F、B.
          ∴F(2,0),B(0,), ∴,.      2分
          .故橢圓的方程為.                  4分
          (2)解1:設(shè)直線的方程為
          消去.       
          設(shè),則,       6分

          ,
          = =.      10分
          ∵點(diǎn)F在圓G的外部,∴,  即,
          解得.      12分
          由△=,解得.又,.            
          .      14分
          解2:設(shè)直線的方程為
          消去.       
          設(shè),,則,,       6分
          則CD的中點(diǎn)為,

          所以圓G的半徑長
          又右焦點(diǎn)F(2,0),所以
          因點(diǎn)F在圓G的外部,所以
          ,整理得
          解得.                              12分
          由△=,解得.又,.            
          .           &nbs

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖為橢圓C:的左、右焦點(diǎn),D,E是橢圓的兩個(gè)頂點(diǎn),橢圓的離心率,的面積為.若點(diǎn)在橢圓C上,則點(diǎn)稱為點(diǎn)M的一個(gè)“橢圓”,直線與橢圓交于A,B兩點(diǎn),A,B兩點(diǎn)的“橢圓”分別為P,Q.

          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)問是否存在過左焦點(diǎn)的直線,使得以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)?若存在,求出該直線的方程;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的焦點(diǎn)為,點(diǎn)是橢圓上的一點(diǎn),軸的交點(diǎn)恰為的中點(diǎn), .
          (1)求橢圓的方程;
          (2)若點(diǎn)為橢圓的右頂點(diǎn),過焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn),求面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

           給定橢圓.稱圓心在原點(diǎn)O,半徑為的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到F的距離為
          (1)求橢圓C的方程和其“準(zhǔn)圓”方程;
          (2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過動(dòng)點(diǎn)P作直線,使得與橢圓C都只有一個(gè)交點(diǎn),試判斷是否垂直?并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知,,,分別是橢圓的四個(gè)頂點(diǎn),△是一個(gè)邊長為2的等邊三角形,其外接圓為圓
          (1)求橢圓及圓的方程;
          (2)若點(diǎn)是圓劣弧上一動(dòng)點(diǎn)(點(diǎn)異于端點(diǎn),),直線分別交線段,橢圓于點(diǎn),直線交于點(diǎn)
          (。┣的最大值;
          (ⅱ)試問:,兩點(diǎn)的橫坐標(biāo)之和是否為定值?若是,求出該定值;若不是,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓C的兩個(gè)焦點(diǎn)分別為,且點(diǎn)在橢圓C上,又.
          (1)求焦點(diǎn)F2的軌跡的方程;
          (2)若直線與曲線交于M、N兩點(diǎn),以MN為直徑的圓經(jīng)過原點(diǎn),求實(shí)數(shù)b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系中,已知定點(diǎn)F(1,0),點(diǎn)軸上運(yùn)動(dòng),點(diǎn)軸上,點(diǎn)
          為平面內(nèi)的動(dòng)點(diǎn),且滿足,
          (1)求動(dòng)點(diǎn)的軌跡的方程;
          (2)設(shè)點(diǎn)是直線上任意一點(diǎn),過點(diǎn)作軌跡的兩條切線,切點(diǎn)分別為,,設(shè)切線,的斜率分別為,,直線的斜率為,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知雙曲線的中心在原點(diǎn),離心率為2,一個(gè)焦點(diǎn)為F(-2,0).
          (1)求雙曲線方程;
          (2)設(shè)Q是雙曲線上一點(diǎn),且過點(diǎn)F,Q的直線l與y軸交于點(diǎn)M,若= 2,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的左右焦點(diǎn)分別為,短軸兩個(gè)端點(diǎn)為,且四邊形是邊長為2的正方形.
          (1)求橢圓方程;
          (2)若分別是橢圓長軸的左右端點(diǎn),動(dòng)點(diǎn)滿足,連接,交橢圓于點(diǎn),證明:為定值;
          (3)在(2)的條件下,試問軸上是否存在異于點(diǎn)的定點(diǎn),使得以為直徑的圓恒過直線的交點(diǎn)?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案