已知點到兩點
,
的距離之和等于4,設(shè)點
的軌跡為
,直線
與軌跡
交于
兩點.
(Ⅰ)寫出軌跡的方程;
(Ⅱ)求的值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知
,
,
,
,其中
.設(shè)直線
與
的交點為
,求動點
的軌跡的參數(shù)方程(以
為參數(shù))及普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知的頂點A在射線
上,
、
兩點關(guān)于x軸對稱,0為坐標(biāo)原點,且線段AB上有一點M滿足
當(dāng)點A在
上移動時,記點M的軌跡為W.
(Ⅰ)求軌跡W的方程;
(Ⅱ)設(shè)是否存在過
的直線
與W相交于P,Q兩點,使得
若存在,
求出直線;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:
的右焦點
在圓
上,直線
交橢圓于
、
兩點.
(1)求橢圓的方程;
(2)若(
為坐標(biāo)原點),求
的值;
(3)設(shè)點關(guān)于
軸的對稱點為
(
與
不重合),且直線
與
軸交于點
,試問
的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
過點C(0,1)的橢圓的離心率為
,橢圓與x軸交于兩點
、
,過點C的直線
與橢圓交于另一點D,并與x軸交于點P,直線AC與直線BD交于點Q.
(I)當(dāng)直線過橢圓右焦點時,求線段CD的長;
(II)當(dāng)點P異于點B時,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓:
的右焦點
與拋物線
的焦點重合,過
作與
軸垂直的直線
與橢圓交于S、T兩點,與拋物線交于C、D兩點,且
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點的直線與橢圓
相交于兩點
,設(shè)
為橢圓
上一點,且滿足
(
為坐標(biāo)原點),當(dāng)
時,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓C:
(a>b>0)的左、右焦點,直線:x=-
將線段F1F2分成兩段,其長度之比為1 : 3.設(shè)A,B是C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點的雙曲線C的右焦點為(2,0),右頂點為
(1)求雙曲線C的方程;
(2)若直線與雙曲線C恒有兩個不同的交點A和B,且
(其中O為原點). 求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓,直線l為圓
的一條切線,且經(jīng)過橢圓C的右焦點,直線l的傾斜角為
,記橢圓C的離心率為e.
(1)求e的值;
(2)試判定原點關(guān)于l的對稱點是否在橢圓上,并說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com