日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知定義在上的三個函數(shù),,且處取得極值.
          (1)求a的值及函數(shù)的單調(diào)區(qū)間.
          (2)求證:當(dāng)時,恒有成立.
          (1),單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是

          試題分析:解題思路:(1)求導(dǎo)函數(shù),利用值,再利用導(dǎo)數(shù)求單調(diào)區(qū)間;(2)作差,構(gòu)造函數(shù),求最值,即證明不等式恒成立.規(guī)律總結(jié):(1)求函數(shù)的單調(diào)區(qū)間的步驟:①求導(dǎo)函數(shù);②解;③得到區(qū)間即為所求單調(diào)區(qū)間;(2)證明不等式恒成立問題,往往轉(zhuǎn)化為求函數(shù)的最值問題.
          試題解析:(1),,

          ,,令;令 得.∴函數(shù)單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是
          (2)∵,∴,∴,
          欲證,只需要證明,即證明
          ,∴
          當(dāng)時,,∴上是增函數(shù),
          ,∴,即
          ,故結(jié)論成立.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù),當(dāng)時,恒有
          (1)求證:是奇函數(shù);
          (2)如果為正實數(shù),,并且,試求在區(qū)間[-2,6]上的最值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)在其定義域上為奇函數(shù).
          ⑴求m的值;
          ⑵若關(guān)于x的不等式對任意實數(shù)恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)上的增函數(shù),
          (1)若,且,求證
          (2)判斷(1)中命題的逆命題是否成立,并證明你的結(jié)論。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知f(x)是定義在[(-2,0)∪(0,2)]上的奇函數(shù),當(dāng)x>0,f(x)的圖象如圖所示,那么f(x)的值域是______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          若函數(shù)上單調(diào)遞增,則實數(shù)的取值范圍是     

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          函數(shù)
          在區(qū)間上單調(diào)遞減,則的取值范圍      

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          如果函數(shù)y=f(x)圖象上任意一點的坐標(biāo)(x,y)都滿足方程lg(x+y)=lgx+lgy,那么y=f(x)在[2,4]上的最小值是________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          若f(x)為R上的增函數(shù),則滿足f(2-m)<f(m2)的實數(shù)m的取值范圍是________.

          查看答案和解析>>

          同步練習(xí)冊答案